We construct a local Cohen-Macaulay ring $R$ with a prime ideal $\mathfrak{p}\in\spec(R)$ such that $R$ satisfies the uniform Auslander condition (UAC), but the localization $R_{\mathfrak{p}}$ does not satisfy Auslander's condition (AC). Given any positive integer $n$, we also construct a local Cohen-Macaulay ring $R$ with a prime ideal $\mathfrak{p}\in\spec(R)$ such that $R$ has exactly two non-isomorphic semidualizing modules, but the localization $R_{\mathfrak{p}}$ has $2^n$ non-isomorphic semidualizing modules. Each of these examples is constructed as a fiber product of two local rings over their common residue field. Additionally, we characterize the non-trivial Cohen-Macaulay fiber products of finite Cohen-Macaulay type.
翻译:我们建造了一个本地Cohen-Macaulay环($mathfrak{p ⁇ in\spec(R)美元), 其最佳理想值为$\mathfrak{p ⁇ in\spec(R)美元, 如此一来, 美元就能满足统一的Auslander条件(UAC), 但本地化的美元( 美元) 无法满足Auslander的条件( AC) 。 鉴于任何正整数, 我们还建造了一个本地的Cohen- Macaulay环( $), 其最佳理想值为$\mathfrak{p ⁇ in\spec(R), 美元可以满足两种非本地化的半成型模块, 但本地化的美元( 美元) ${mathfrak{p} 却满足不了Auslander 的条件( Auslander) 。 这些示例都是作为两个本地圆环在其共同残渣场的纤维产品上建成的。 此外, 我们将有限的科曼- Macaulay型非三维的 Coh- Maclay 纤维产品进行定性。