Using the 6,638 case descriptions of societal impact submitted for evaluation in the Research Excellence Framework (REF 2014), we replicate the topic model (Latent Dirichlet Allocation or LDA) made in this context and compare the results with factor-analytic results using a traditional word-document matrix (Principal Component Analysis or PCA). Removing a small fraction of documents from the sample, for example, has on average a much larger impact on LDA than on PCA-based models to the extent that the largest distortion in the case of PCA has less effect than the smallest distortion of LDA-based models. In terms of semantic coherence, however, LDA models outperform PCA-based models. The topic models inform us about the statistical properties of the document sets under study, but the results are statistical and should not be used for a semantic interpretation - for example, in grant selections and micro-decision making, or scholarly work-without follow-up using domain-specific semantic maps.
翻译:使用在《卓越研究框架》(REF,2014年)中提交供评价的6 638个社会影响案例说明,我们复制了在此背景下制作的专题模型(Latent Dirichlet分配或LDA),并使用传统的单文件矩阵(主要成分分析或CPA)将结果与要素分析结果进行比较。例如,从样本中去除的一小部分文件对LDA的影响平均比对以五氯苯甲醚为基础的模型的影响大得多,因为就五氯苯甲醚而言,最大的扭曲效果比基于LDA的模型最小的扭曲效果要小。然而,就语义一致性而言,LDA模型优于以五氯苯甲醚为基础的模型。这些专题模型向我们介绍了正在研究的成套文件的统计属性,但结果是统计性的,不应用于语义解释,例如,在赠款选择和微观决策方面,或利用特定语义图进行学术上的工作后续行动。