Inspired by human conscious planning, we propose Skipper, a model-based reinforcement learning agent utilizing spatio-temporal abstractions to generalize learned skills in novel situations. It automatically decomposes the given task into smaller, more manageable subtasks, and hence enables sparse decision-making and focused computation on the relevant parts of the environment. This relies on the extraction of an abstracted proxy problem represented as a directed graph, in which vertices and edges are learned end-to-end from hindsight. Our theoretical analyses provide performance guarantees under appropriate assumptions and establish where our approach is expected to be helpful. Generalization-focused experiments validate Skipper's significant advantage in zero-shot generalization, compared to existing state-of-the-art hierarchical planning methods.
翻译:暂无翻译