We present a locally optimal tracking controller for Cable Driven Parallel Robot (CDPR) control based on a time-varying Linear Quadratic Gaussian (TV-LQG) controller. In contrast to many methods which use fixed feedback gains, our time-varying controller computes the optimal gains depending on the location in the workspace and the future trajectory. Meanwhile, we rely heavily on offline computation to reduce the burden of online implementation and feasibility checking. Following the growing popularity of probabilistic graphical models for optimal control, we use factor graphs as a tool to formulate our controller for their efficiency, intuitiveness, and modularity. The topology of a factor graph encodes the relevant structural properties of equations in a way that facilitates insight and efficient computation using sparse linear algebra solvers. We first use factor graph optimization to compute a nominal trajectory, then linearize the graph and apply variable elimination to compute the locally optimal, time varying linear feedback gains. Next, we leverage the factor graph formulation to compute the locally optimal, time-varying Kalman Filter gains, and finally combine the locally optimal linear control and estimation laws to form a TV-LQG controller. We compare the tracking accuracy of our TV-LQG controller to a state-of-the-art dual-space feed-forward controller on a 2.9m x 2.3m, 4-cable planar robot and demonstrate improved tracking accuracies of 0.8{\deg} and 11.6mm root mean square error in rotation and translation respectively.
翻译:我们根据时间变化的线性Quadratic Gausian (TV-LQG) 控制器,为可控驱动驱动器提供了一种本地最佳跟踪控制器。 与使用固定反馈收益的许多方法不同, 我们的时间分配控制器根据工作空间的位置和未来轨迹计算最佳收益。 与此同时, 我们严重依赖离线计算来减轻在线实施和可行性检查的负担。 随着概率化图形模型在最佳控制方面越来越受欢迎, 我们使用系数图作为工具来设计我们的控制器, 以显示其效率、 直观性和模块化。 元素图的表层图将方程式的相关结构属性编码, 以便使用稀薄线性平面平面平面平面平面平面解器进行洞察和高效计算。 我们首先使用因数图形优化来计算名义轨迹轨迹轨迹, 然后将图形线性平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面图。