We investigate the problem of online learning, which has gained significant attention in recent years due to its applicability in a wide range of fields from machine learning to game theory. Specifically, we study the online optimization of mixable loss functions with logarithmic static regret in a dynamic environment. The best dynamic estimation sequence that we compete against is selected in hindsight with full observation of the loss functions and is allowed to select different optimal estimations in different time intervals (segments). We propose an online mixture framework that uses these static solvers as the base algorithm. We show that with the suitable selection of hyper-expert creations and weighting strategies, we can achieve logarithmic and squared logarithmic regret per switch in quadratic and linearithmic computational complexity, respectively. For the first time in literature, we show that it is also possible to achieve near-logarithmic regret per switch with sub-polynomial complexity per time. Our results are guaranteed to hold in a strong deterministic sense in an individual sequence manner.
翻译:我们调查了在线学习的问题,这个问题近年来由于在从机器学习到游戏理论等广泛领域的应用性而引起极大关注。 具体地说, 我们用动态环境中的对数静态遗憾来研究可混合损失函数的在线优化。 我们竞争的最佳动态估计序列是在事后观察中选择的,同时充分观察损失函数,并允许在不同时间间隔(部分)中选择不同的最佳估计。 我们提议了一个使用这些静态解决问题器作为基本算法的在线混合框架。 我们通过适当选择超专业创造和加权策略来显示,我们可以在二次和线性计算复杂度中分别实现对数和正方对数的对数选择。 我们第一次在文献中显示,我们也可以在一次的分极复杂度中实现接近对数的每个开关的近数式遗憾。 我们的结果保证在单个序列中具有强烈的确定性。