We aim to make stochastic gradient descent (SGD) adaptive to (i) the noise $\sigma^2$ in the stochastic gradients and (ii) problem-dependent constants. When minimizing smooth, strongly-convex functions with condition number $\kappa$, we prove that $T$ iterations of SGD with exponentially decreasing step-sizes and knowledge of the smoothness can achieve an $\tilde{O} \left(\exp \left( \frac{-T}{\kappa} \right) + \frac{\sigma^2}{T} \right)$ rate, without knowing $\sigma^2$. In order to be adaptive to the smoothness, we use a stochastic line-search (SLS) and show (via upper and lower-bounds) that SGD with SLS converges at the desired rate, but only to a neighbourhood of the solution. On the other hand, we prove that SGD with an offline estimate of the smoothness converges to the minimizer. However, its rate is slowed down proportional to the estimation error. Next, we prove that SGD with Nesterov acceleration and exponential step-sizes (referred to as ASGD) can achieve the near-optimal $\tilde{O} \left(\exp \left( \frac{-T}{\sqrt{\kappa}} \right) + \frac{\sigma^2}{T} \right)$ rate, without knowledge of $\sigma^2$. When used with offline estimates of the smoothness and strong-convexity, ASGD still converges to the solution, albeit at a slower rate. We empirically demonstrate the effectiveness of exponential step-sizes coupled with a novel variant of SLS.


翻译:我们的目标是使振动梯度下降(SGD) 适应 (一) 振动梯度梯度中的噪音 $gma=2美元 和(二) 问题依赖常数。当以条件号为$\kappa美元将平滑、强的电流函数最小化时,我们证明,以飞速下降的步数和对平滑的了解,SGD的反复值将达到$\tilde{O} left(\ friend (\frac{-Thunkappa}\right) + 弗拉茨(D) gma2=2\\\T}\right) 基数的噪音,而不知道$\gma2美元。为了适应平滑滑度,我们用SLSS(通过上下下限) 显示SGD(SLS) 和SLS(下限) 的升步数,但是,我们证明,平坦坦的估算会接近D(现在) 方向, 水平将显示S-raldeal-ralde 的加速率,我们将显示S-ral-ral-ration 的加速率将显示为SGD。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月18日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员