To deal with the exhausting annotations, self-supervised representation learning from unlabeled point clouds has drawn much attention, especially centered on augmentation-based contrastive methods. However, specific augmentations hardly produce sufficient transferability to high-level tasks on different datasets. Besides, augmentations on point clouds may also change underlying semantics. To address the issues, we propose a simple but efficient augmentation fusion contrastive learning framework to combine data augmentations in Euclidean space and feature augmentations in feature space. In particular, we propose a data augmentation method based on sampling and graph generation. Meanwhile, we design a data augmentation network to enable a correspondence of representations by maximizing consistency between augmented graph pairs. We further design a feature augmentation network that encourages the model to learn representations invariant to the perturbations using an encoder perturbation. We comprehensively conduct extensive object classification experiments and object part segmentation experiments to validate the transferability of the proposed framework. Experimental results demonstrate that the proposed framework is effective to learn the point cloud representation in a self-supervised manner, and yields state-of-the-art results in the community. The source code is publicly available at: https://zhiyongsu.github.io/Project/AFSRL.html.
翻译:为了应对耗尽的描述,从未贴标签的云层进行自我监督的演示学习已引起许多注意,特别是以基于增强的对比方法为中心。然而,具体的增强几乎无法产生足够的可转移性,用于不同数据集的高级任务。此外,点云的增强也可能改变基本的语义。为了解决这些问题,我们提议了一个简单而有效的增强聚合对比学习框架,将欧克利底空间的数据增强和特征空间的特性增强结合起来。特别是,我们提议了一个基于抽样和图形生成的数据增强方法。与此同时,我们设计了一个数据增强网络,以便通过尽可能扩大的图形配对之间的一致性,使代表的对应性能够进行。我们进一步设计了一个功能增强网络,鼓励模型,利用电解扰扰动器来学习对扰动的表达。我们进行全面的物体分类实验和对象部分分割实验,以验证拟议框架的可转移性。实验结果表明,拟议的框架能够有效地以自我监督的方式了解点云的分布,并产生州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州