Lumped parameter methods aim to simplify the evolution of spatially-extended or continuous physical systems to that of a "lumped" element representative of the physical scales of the modeled system. For systems where the definition of a lumped element or its associated physics may be unknown, modeling tasks may be restricted to full-fidelity simulations of the physics of a system. In this work, we consider data-driven modeling tasks with limited point-wise measurements of otherwise continuous systems. We build upon the notion of the Universal Differential Equation (UDE) to construct data-driven models for reducing dynamics to that of a lumped parameter and inferring its properties. The flexibility of UDEs allow for composing various known physical priors suitable for application-specific modeling tasks, including lumped parameter methods. The motivating example for this work is the plunge and dwell stages for friction-stir welding; specifically, (i) mapping power input into the tool to a point-measurement of temperature and (ii) using this learned mapping for process control.
翻译:集总参数方法旨在将空间扩展或连续物理系统的演变简化为一个“集总”元素,其代表了建模系统的物理规模。对于定义集总元素或其相关物理学的系统而言,建模任务可能会受限于完全保真的物理仿真。在这项工作中,我们考虑到具有有限点测量的其余连续系统的数据驱动建模任务。我们基于通用微分方程(UDE)的概念,构建数据驱动模型,将动态降低到集总参数并推断其属性。UDE的灵活性允许组合适用于特定于应用程序的建模任务的各种已知物理先验,包括集总参数方法。本工作的动机例子是摩擦搅拌焊的冲压和滞留阶段;具体而言,(i)将工具输入功率映射到温度的点测量,以及(ii)使用该学习映射进行过程控制。