Simply restricting the computation to non-sensitive part of the data may lead to inferences on sensitive data through data dependencies. Inference control from data dependencies has been studied in the prior work. However, existing solutions either detect and deny queries which may lead to leakage -- resulting in poor utility, or only protects against exact reconstruction of the sensitive data -- resulting in poor security. In this paper, we present a novel security model called full deniability. Under this stronger security model, any information inferred about sensitive data from non-sensitive data is considered as a leakage. We describe algorithms for efficiently implementing full deniability on a given database instance with a set of data dependencies and sensitive cells. Using experiments on two different datasets, we demonstrate that our approach protects against realistic adversaries while hiding only minimal number of additional non-sensitive cells and scales well with database size and sensitive data.
翻译:仅仅将计算限于数据中非敏感部分,就可能导致通过数据依赖性对敏感数据作出推断; 先前的工作已经研究了数据依赖性的推断控制; 但是,现有的解决办法要么发现并拒绝可能导致泄漏的查询 -- -- 造成效用差,要么仅仅保护不至于精确重建敏感数据 -- -- 导致安全性差; 在本文件中,我们提出了一个称为完全可撤销性的新的安全模式; 在这种较强的安全模式下,从非敏感数据中推断出的任何敏感数据信息都被视为渗漏; 我们描述了在特定数据库实例中以一套数据依赖性和敏感单元有效地实施充分免责性的算法; 利用两个不同的数据集的实验,我们证明我们的方法在仅仅隐藏少量额外的非敏感单元和尺度以及数据库大小和敏感数据的同时,只保护现实的对手。