AI-Powered database (AI-DB) is a novel relational database system that uses a self-supervised neural network, database embedding, to enable semantic SQL queries on relational tables. In this paper, we describe an architecture and implementation of in-database interpretability infrastructure designed to provide simple, transparent, and relatable insights into ranked results of semantic SQL queries supported by AI-DB. We introduce a new co-occurrence based interpretability approach to capture relationships between relational entities and describe a space-efficient probabilistic Sketch implementation to store and process co-occurrence counts. Our approach provides both query-agnostic (global) and query-specific (local) interpretabilities. Experimental evaluation demonstrate that our in-database probabilistic approach provides the same interpretability quality as the precise space-inefficient approach, while providing scalable and space efficient runtime behavior (up to 8X space savings), without any user intervention.
翻译:AI-Powered数据库(AI-DB)是一个新型的关系数据库系统,它使用自监管神经网络、数据库嵌入,使语义 SQL 查询能够在关系表上进行。在本文中,我们描述了数据库内解释性基础设施的结构和实施,目的是提供简单、透明和可比较的洞察力,了解AI-DB所支持的语义 SQL 查询的分级结果。我们采用了一种新的基于共同解释性的解释性方法,以捕捉关系实体之间的关系,并描述在储存和过程共同计算时,以空间效率高的概率缓冲执行。我们的方法提供了查询性(全球)和特定(本地)解释性。实验性评估表明,我们的数据库内可解释性方法提供了与精确的空间效率方法相同的解释性质量,同时提供了可扩展性和空间高效的运行时间动作(可达8X空间节减量),而没有任何用户干预。