AI-Powered database (AI-DB) is a novel relational database system that uses a self-supervised neural network, database embedding, to enable semantic SQL queries on relational tables. In this paper, we describe an architecture and implementation of in-database interpretability infrastructure designed to provide simple, transparent, and relatable insights into ranked results of semantic SQL queries supported by AI-DB. We introduce a new co-occurrence based interpretability approach to capture relationships between relational entities and describe a space-efficient probabilistic Sketch implementation to store and process co-occurrence counts. Our approach provides both query-agnostic (global) and query-specific (local) interpretabilities. Experimental evaluation demonstrate that our in-database probabilistic approach provides the same interpretability quality as the precise space-inefficient approach, while providing scalable and space efficient runtime behavior (up to 8X space savings), without any user intervention.


翻译:AI-Powered数据库(AI-DB)是一个新型的关系数据库系统,它使用自监管神经网络、数据库嵌入,使语义 SQL 查询能够在关系表上进行。在本文中,我们描述了数据库内解释性基础设施的结构和实施,目的是提供简单、透明和可比较的洞察力,了解AI-DB所支持的语义 SQL 查询的分级结果。我们采用了一种新的基于共同解释性的解释性方法,以捕捉关系实体之间的关系,并描述在储存和过程共同计算时,以空间效率高的概率缓冲执行。我们的方法提供了查询性(全球)和特定(本地)解释性。实验性评估表明,我们的数据库内可解释性方法提供了与精确的空间效率方法相同的解释性质量,同时提供了可扩展性和空间高效的运行时间动作(可达8X空间节减量),而没有任何用户干预。

0
下载
关闭预览

相关内容

SQL 全名是结构化查询语言,是用于数据库中的标准数据查询语言,IBM 公司最早使用在其开发的数据库系统中。
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
NeurlPS2022推荐系统论文集锦
机器学习与推荐算法
1+阅读 · 2022年9月26日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2018年1月28日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员