JPEG is a widely used compression scheme to efficiently reduce the volume of transmitted images. The artifacts appear among blocks due to the information loss, which not only affects the quality of images but also harms the subsequent high-level tasks in terms of feature drifting. High-level vision models trained on high-quality images will suffer performance degradation when dealing with compressed images, especially on mobile devices. Numerous learning-based JPEG artifact removal methods have been proposed to handle visual artifacts. However, it is not an ideal choice to use these JPEG artifact removal methods as a pre-processing for compressed image classification for the following reasons: 1. These methods are designed for human vision rather than high-level vision models; 2. These methods are not efficient enough to serve as pre-processing on resource-constrained devices. To address these issues, this paper proposes a novel lightweight AFD module to boost the performance of pre-trained image classification models when facing compressed images. First, a FDE-Net is devised to generate the spatial-wise FDM in the DCT domain. Next, the estimated FDM is transmitted to the FE-Net to generate the mapping relationship between degraded features and corresponding high-quality features. A simple but effective RepConv block equipped with structural re-parameterization is utilized in FE-Net, which enriches feature representation in the training phase while maintaining efficiency in the deployment phase. After training on limited compressed images, the AFD-Module can serve as a "plug-and-play" model for pre-trained classification models to improve their performance on compressed images. Experiments demonstrate that our proposed AFD module can comprehensively improve the accuracy of the pre-trained classification models and significantly outperform the existing methods.


翻译:暂无翻译

0
下载
关闭预览

相关内容

图像分类,顾名思义,是一个输入图像,输出对该图像内容分类的描述的问题。它是计算机视觉的核心,实际应用广泛。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
14+阅读 · 2018年4月6日
Arxiv
20+阅读 · 2018年1月17日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员