Low-discrepancy points are designed to efficiently fill the space in a uniform manner. This uniformity is highly advantageous in many problems in science and engineering, including in numerical integration, computer vision, machine perception, computer graphics, machine learning, and simulation. Whereas most previous low-discrepancy constructions rely on abstract algebra and number theory, Message-Passing Monte Carlo (MPMC) was recently introduced to exploit machine learning methods for generating point sets with lower discrepancy than previously possible. However, MPMC is limited to generating point sets and cannot be extended to low-discrepancy sequences (LDS), i.e., sequences of points in which every prefix has low discrepancy, a property essential for many applications. To address this limitation, we introduce Neural Low-Discrepancy Sequences ($NeuroLDS$), the first machine learning-based framework for generating LDS. Drawing inspiration from classical LDS, we train a neural network to map indices to points such that the resulting sequences exhibit minimal discrepancy across all prefixes. To this end, we deploy a two-stage learning process: supervised approximation of classical constructions followed by unsupervised fine-tuning to minimize prefix discrepancies. We demonstrate that $NeuroLDS$ outperforms all previous LDS constructions by a significant margin with respect to discrepancy measures. Moreover, we demonstrate the effectiveness of $NeuroLDS$ across diverse applications, including numerical integration, robot motion planning, and scientific machine learning. These results highlight the promise and broad significance of Neural Low-Discrepancy Sequences. Our code can be found at https://github.com/camail-official/neuro-lds.
翻译:暂无翻译