Predicting the motion of dynamic agents is a critical task for guaranteeing the safety of autonomous systems. A particular challenge is that motion prediction algorithms should obey dynamics constraints and quantify prediction uncertainty as a measure of confidence. We present a physics-constrained approach for motion prediction which uses a surrogate dynamical model to ensure that predicted trajectories are dynamically feasible. We propose a two-step integration consisting of intent and trajectory prediction subject to dynamics constraints. We also construct prediction regions that quantify uncertainty and are tailored for autonomous driving by using conformal prediction, a popular statistical tool. Physics Constrained Motion Prediction achieves a 41% better ADE, 56% better FDE, and 19% better IoU over a baseline in experiments using an autonomous racing dataset.
翻译:预测动态物剂的动态是保证自主系统安全的关键任务。 一项特别的挑战是运动预测算法应该服从动态限制并量化预测不确定性,以此作为一种信任度的衡量标准。 我们提出了一个物理学限制的运动预测方法,使用代用动态模型确保预测轨迹具有动态可行性。 我们建议分两步整合,由意图和轨迹预测组成,但受动态限制。 我们还构建了预测区域,对不确定性进行量化,并使用符合要求的预测,即流行的统计工具,适合自主驾驶。 物理受限制的动力预测比使用自主赛跑数据集的实验基线高出41%的ADE、56%的FDE和19%的IOU。