Placing a human in the loop may abate the risks of deploying AI systems in safety-critical settings (e.g., a clinician working with a medical AI system). However, mitigating risks arising from human error and uncertainty within such human-AI interactions is an important and understudied issue. In this work, we study human uncertainty in the context of concept-based models, a family of AI systems that enable human feedback via concept interventions where an expert intervenes on human-interpretable concepts relevant to the task. Prior work in this space often assumes that humans are oracles who are always certain and correct. Yet, real-world decision-making by humans is prone to occasional mistakes and uncertainty. We study how existing concept-based models deal with uncertain interventions from humans using two novel datasets: UMNIST, a visual dataset with controlled simulated uncertainty based on the MNIST dataset, and CUB-S, a relabeling of the popular CUB concept dataset with rich, densely-annotated soft labels from humans. We show that training with uncertain concept labels may help mitigate weaknesses of concept-based systems when handling uncertain interventions. These results allow us to identify several open challenges, which we argue can be tackled through future multidisciplinary research on building interactive uncertainty-aware systems. To facilitate further research, we release a new elicitation platform, UElic, to collect uncertain feedback from humans in collaborative prediction tasks.
翻译:将人类置于循环中,可减轻在安全关键的环境中部署AI系统的风险(例如,临床医生使用医疗AI系统)。然而,减轻在这种人工智能交互中由人类错误和不确定性产生的风险是一个重要且未被研究充分的问题。在这项工作中,我们研究了基于概念模型环境下的人类不确定性,这是一类AI系统,可通过概念干预实现人类反馈,其中专家介入与任务相关的易于理解的概念中。在这个领域,先前的研究往往假定人类是完美的司南,总是确定和正确的,然而,人类在实际决策中偶尔犯错误和不确定性。我们研究了现有的基于概念的模型如何处理来自不确定的干预。通过两个新数据集来展示:UMNIST和CUB-S。UMNIST是一个视觉数据集,其基于MNIST数据集具有控制的模拟不确定性,CUB-S是对流行的CUB概念数据集进行的再标记,具有来自人类的丰富、密集注释的软标签。我们发现,训练不确定概念标签可以帮助减轻基于概念的系统处理不确定干预时的弱点。这些结果使我们能够确定一些需要解决的挑战,我们认为,通过未来的跨学科研究,建立交互式不确定性感知系统可以解决这些挑战。为了促进进一步的研究,我们发布了一个新的采集平台UElic,以收集来自人类在合作预测任务中不确定的反馈。