Deep learning has been widely used in data-intensive applications. However, training a deep neural network often requires a large data set. When there is not enough data available for training, the performance of deep learning models is even worse than that of shallow networks. It has been proved that few-shot learning can generalize to new tasks with few training samples. Fine-tuning of a deep model is simple and effective few-shot learning method. However, how to fine-tune deep learning models (fine-tune convolution layer or BN layer?) still lack deep investigation. Hence, we study how to fine-tune deep models through experimental comparison in this paper. Furthermore, the weight of the models is analyzed to verify the feasibility of the fine-tuning method.


翻译:深层学习被广泛用于数据密集型应用。然而,深神经网络的培训往往需要大型数据集。当没有足够的培训数据时,深层学习模型的性能甚至比浅网络的性能还要差。实践证明,少见的学习可以用少量培训样本来概括新的任务。深层模型的微调是简单而有效的少见的学习方法。然而,如何微调深层学习模型(松果层或BN层?)仍然缺乏深入的调查。因此,我们研究如何通过本文中的实验性比较来微调深层模型。此外,对模型的权重进行了分析,以核实微调方法的可行性。

0
下载
关闭预览

相关内容

小样本学习(Few-Shot Learning,以下简称 FSL )用于解决当可用的数据量比较少时,如何提升神经网络的性能。在 FSL 中,经常用到的一类方法被称为 Meta-learning。和普通的神经网络的训练方法一样,Meta-learning 也包含训练过程和测试过程,但是它的训练过程被称作 Meta-training 和 Meta-testing。
元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年1月15日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
8+阅读 · 2018年12月6日
Arxiv
5+阅读 · 2018年1月18日
Arxiv
10+阅读 · 2017年12月29日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
0+阅读 · 2021年1月15日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
8+阅读 · 2018年12月6日
Arxiv
5+阅读 · 2018年1月18日
Arxiv
10+阅读 · 2017年12月29日
Top
微信扫码咨询专知VIP会员