We show that for separable convex optimization, random stepsizes fully accelerate Gradient Descent. Specifically, using inverse stepsizes i.i.d. from the Arcsine distribution improves the iteration complexity from $O(k)$ to $O(k^{1/2})$, where $k$ is the condition number. No momentum or other algorithmic modifications are required. This result is incomparable to the (deterministic) Silver Stepsize Schedule which does not require separability but only achieves partial acceleration $O(k^{\log_{1+\sqrt{2}} 2}) \approx O(k^{0.78})$. Our starting point is a conceptual connection to potential theory: the variational characterization for the distribution of stepsizes with fastest convergence rate mirrors the variational characterization for the distribution of charged particles with minimal logarithmic potential energy. The Arcsine distribution solves both variational characterizations due to a remarkable "equalization property" which in the physical context amounts to a constant potential over space, and in the optimization context amounts to an identical convergence rate over all quadratic functions. A key technical insight is that martingale arguments extend this phenomenon to all separable convex functions. We interpret this equalization as an extreme form of hedging: by using this random distribution over stepsizes, Gradient Descent converges at exactly the same rate for all functions in the function class.
翻译:暂无翻译