Rates of missing data often depend on record-keeping policies and thus may change across times and locations, even when the underlying features are comparatively stable. In this paper, we introduce the problem of Domain Adaptation under Missingness Shift (DAMS). Here, (labeled) source data and (unlabeled) target data would be exchangeable but for different missing data mechanisms. We show that if missing data indicators are available, DAMS reduces to covariate shift. Addressing cases where such indicators are absent, we establish the following theoretical results for underreporting completely at random: (i) covariate shift is violated (adaptation is required); (ii) the optimal linear source predictor can perform arbitrarily worse on the target domain than always predicting the mean; (iii) the optimal target predictor can be identified, even when the missingness rates themselves are not; and (iv) for linear models, a simple analytic adjustment yields consistent estimates of the optimal target parameters. In experiments on synthetic and semi-synthetic data, we demonstrate the promise of our methods when assumptions hold. Finally, we discuss a rich family of future extensions.
翻译:缺失数据的比率往往取决于记录保存政策,因此,即使基本特征相对稳定,也可能会在不同的时间和地点发生变化。本文介绍在失踪转移(DAMS)下,域域适应问题。这里,(标签)源数据和(未标签)目标数据可以互换,但缺少的数据机制不同。我们表明,如果数据指标缺失,DAMS会降低变化到千变万化。在缺乏此类指标的情况下,我们为完全随机漏报设定了以下理论结果:(一) 共变换(需要调整);(二) 最佳线性源预测器在目标领域可以任意地比总是预测平均值差;(三) 最佳目标预测器可以被确定,即使缺失率本身并不存在;(四) 对于线性模型,简单分析的调整可以得出最佳目标参数的一致估计。在对合成和半合成数据进行实验时,我们在假设时展示了我们方法的希望。最后,我们讨论了未来扩展的丰富系列。</s>