We tackle the problem of nonparametric variable selection with a focus on discovering interactions between variables. With $p$ variables there are $O(p^s)$ possible order-$s$ interactions making exhaustive search infeasible. It is nonetheless possible to identify the variables involved in interactions with only linear computation cost, $O(p)$. The trick is to maximize a class of parametrized nonparametric dependence measures which we call metric learning objectives; the landscape of these nonconvex objective functions is sensitive to interactions but the objectives themselves do not explicitly model interactions. Three properties make metric learning objectives highly attractive: (a) The stationary points of the objective are automatically sparse (i.e. performs selection) -- no explicit $\ell_1$ penalization is needed. (b) All stationary points of the objective exclude noise variables with high probability. (c) Guaranteed recovery of all signal variables without needing to reach the objective's global maxima or special stationary points. The second and third properties mean that all our theoretical results apply in the practical case where one uses gradient ascent to maximize the metric learning objective. While not all metric learning objectives enjoy good statistical power, we design an objective based on $\ell_1$ kernels that does exhibit favorable power: it recovers (i) main effects with $n \sim \log p$ samples, (ii) hierarchical interactions with $n \sim \log p$ samples and (iii) order-$s$ pure interactions with $n \sim p^{2(s-1)}\log p$ samples.


翻译:我们解决了非参数变量选择的问题,重点是发现变量之间的相互作用。 以美元为主的变量是 $O( p%s), 可能的定序- $s 互动使详尽搜索不可行。 尽管如此, 仍有可能确定互动中涉及的变量, 只有线性计算成本, $O( p) 美元。 我们称之为衡量学习目标, 这些非碳化非目标功能的景观对互动十分敏感, 但目标本身并不明确模型互动。 三种特性使得衡量学习目标具有很高的吸引力:(a) 目标的固定点是自动稀释的( 进行选择) -- 不需要明确的 $\ ell_ 1美元处罚 。 (b) 目标的所有固定点都排除高概率的噪音变量。 (c) 保证恢复所有信号变量,而不需要达到目标的全球最大值或特殊固定点。 第二和第三特性意味着我们所有的理论结果都适用于实际案例, 其中我们用梯度作为衡量指标学习目标的最大值( $ ) 。 虽然所有指标性指标性目标都享有良好的统计顺序, 以 以 $ 为主的图像 。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
专知会员服务
42+阅读 · 2020年12月18日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
108+阅读 · 2020年11月12日
专知会员服务
109+阅读 · 2020年3月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年2月16日
Arxiv
12+阅读 · 2019年4月9日
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2020年12月18日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
108+阅读 · 2020年11月12日
专知会员服务
109+阅读 · 2020年3月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员