Neural Architecture Search (NAS) has shown excellent results in designing architectures for computer vision problems. NAS alleviates the need for human-defined settings by automating architecture design and engineering. However, NAS methods tend to be slow, as they require large amounts of GPU computation. This bottleneck is mainly due to the performance estimation strategy, which requires the evaluation of the generated architectures, mainly by training them, to update the sampler method. In this paper, we propose EPE-NAS, an efficient performance estimation strategy, that mitigates the problem of evaluating networks, by scoring untrained networks and creating a correlation with their trained performance. We perform this process by looking at intra and inter-class correlations of an untrained network. We show that EPE-NAS can produce a robust correlation and that by incorporating it into a simple random sampling strategy, we are able to search for competitive networks, without requiring any training, in a matter of seconds using a single GPU. Moreover, EPE-NAS is agnostic to the search method, since it focuses on the evaluation of untrained networks, making it easy to integrate into almost any NAS method.


翻译:在设计计算机视觉问题架构方面,神经结构搜索(NAS)显示了在设计计算机视觉问题架构方面的优异结果。NAS通过建筑设计和工程自动化减轻了人类定义环境的需要。然而,NAS的方法往往缓慢,因为它们需要大量的GPU计算。这一瓶颈主要是由于绩效评估战略,该战略要求对生成的架构进行评估,主要是通过培训来更新取样器方法。在本文件中,我们建议EPE-NAS(高效的绩效评估战略)通过评分未受过训练的网络和与其训练有素的绩效建立相关性来缓解网络的评估问题。我们通过考察未受过训练的网络的内部和阶级间相互关系来开展这一过程。我们表明,EPE-NAS能够产生强有力的相关性,通过将其纳入简单的随机抽样战略,我们可以在短短的几秒内就使用单一的GPU,在不需要任何培训的情况下寻找竞争性的网络。此外,EPE-NAS(NAS)对于搜索方法来说是敏感的,因为它侧重于未受过训练的网络的评价,容易融入几乎所有NAS的方法。

0
下载
关闭预览

相关内容

深度学习搜索,Exploring Deep Learning for Search
专知会员服务
57+阅读 · 2020年5月9日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
8+阅读 · 2021年1月28日
Arxiv
6+阅读 · 2020年10月8日
Arxiv
5+阅读 · 2018年9月11日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
8+阅读 · 2021年1月28日
Arxiv
6+阅读 · 2020年10月8日
Arxiv
5+阅读 · 2018年9月11日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
12+阅读 · 2018年9月5日
Top
微信扫码咨询专知VIP会员