Modern decision-making processes require uncertainty-aware models, especially those relying on non-symmetric costs and risk-averse profiles. The objective of this work is to propose a dynamic model for the conditional non-parametric distribution function (CDF) to generate probabilistic forecasts for a renewable generation time series. To do that, we propose an adaptive non-parametric time-series model driven by a regularized multiple-quantile-regression (MQR) framework. In our approach, all regression models are jointly estimated through a single linear optimization problem that finds the global-optimal parameters in polynomial time. An innovative feature of our work is the consideration of a Lipschitz regularization of the first derivative of coefficients in the quantile space, which imposes coefficient smoothness. The proposed regularization induces a coupling effect among quantiles creating a single non-parametric CDF model with improved out-of-sample performance. A case study with realistic wind-power generation data from the Brazilian system shows: 1) the regularization model is capable to improve the performance of MQR probabilistic forecasts, and 2) our MQR model outperforms five relevant benchmarks: two based on the MQR framework, and three based on parametric models, namely, SARIMA, and GAS with Beta and Weibull CDF.


翻译:现代决策程序需要具有不确定性的识别模型,特别是那些依赖非对称成本和风险偏向特征的模型。这项工作的目标是为有条件的非参数分布功能(CDF)提出一个动态模型,以便为可再生的一代时间序列产生概率预测。为此,我们提议了一个适应性非参数的时间序列模型,由常规化的多量回归(MQR)框架驱动。在我们的方法中,所有回归模型都是通过单一线性优化问题共同估算的,在多元时发现全球最佳参数。我们工作的一个创新特征是考虑将最小空间中第一个衍生的系数(CDF)正规化,以设定系数的顺畅度。为了做到这一点,我们提议的一种适应性非参数时间序列模型在四分点之间产生合并效应,形成单一的非参数的CQDF模型(MQR),以我们相关的CIMA模型和MQQF模型为基础,即以SAR模型和SAR模型为基础的MQ模型,即以SARA模型和MQF模型为基础,以我们相关的模型为基础,即SARAF模型和MQ框架为基础,以五个模型为基础。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
159+阅读 · 2019年10月12日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
159+阅读 · 2019年10月12日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员