Testing Deep Learning (DL) systems is a complex task as they do not behave like traditional systems would, notably because of their stochastic nature. Nonetheless, being able to adapt existing testing techniques such as Mutation Testing (MT) to DL settings would greatly improve their potential verifiability. While some efforts have been made to extend MT to the Supervised Learning paradigm, little work has gone into extending it to Reinforcement Learning (RL) which is also an important component of the DL ecosystem but behaves very differently from SL. This paper builds on the existing approach of MT in order to propose a framework, RLMutation, for MT applied to RL. Notably, we use existing taxonomies of faults to build a set of mutation operators relevant to RL and use a simple heuristic to generate test cases for RL. This allows us to compare different mutation killing definitions based on existing approaches, as well as to analyze the behavior of the obtained mutation operators and their potential combinations called Higher Order Mutation(s) (HOM). We show that the design choice of the mutation killing definition can affect whether or not a mutation is killed as well as the generated test cases. Moreover, we found that even with a relatively small number of test cases and operators we manage to generate HOM with interesting properties which can enhance testing capability in RL systems.


翻译:深学习(DL)测试系统是一项复杂的任务,因为它们的行为方式不像传统系统那样,特别是因为它们具有随机性。然而,如果能够将现有的测试技术(如变异测试(MT))改造到DL设置中,将极大地提高它们的潜在可核查性。虽然已作出一些努力将MT扩展至监督学习范式,但将MT扩展至强化学习(RL)系统(RL)的工作很少,这也是DL生态系统的一个重要组成部分,但行为与SL非常不同。本文以MT的现有方法为基础,为MT提出一个框架,即RLMutation(RLMutation),用于RL。特别是,我们利用现有的断层分类法来建立一套与RL相关的变异操作器操作器,并使用简单的超导法来生成RL的测试案例。这使我们能够比较基于现有方法的不同变异杀害定义,并分析获得的变异操作器及其潜在组合的行为,称为更高调(HM) (HM) 。我们表明,变异操作器的设计选择中的变异杀人定义可以影响相对而言的测试案例以及我们所测测的越轨能力。

0
下载
关闭预览

相关内容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系统编译器、体系结构和综合国际会议。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/cases/index.html
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
66+阅读 · 2022年4月13日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员