Visible-Infrared person re-identification (VI-ReID) aims to match cross-modality pedestrian images, breaking through the limitation of single-modality person ReID in dark environment. In order to mitigate the impact of large modality discrepancy, existing works manually design various two-stream architectures to separately learn modality-specific and modality-sharable representations. Such a manual design routine, however, highly depends on massive experiments and empirical practice, which is time consuming and labor intensive. In this paper, we systematically study the manually designed architectures, and identify that appropriately separating Batch Normalization (BN) layers is the key to bring a great boost towards cross-modality matching. Based on this observation, the essential objective is to find the optimal separation scheme for each BN layer. To this end, we propose a novel method, named Cross-Modality Neural Architecture Search (CM-NAS). It consists of a BN-oriented search space in which the standard optimization can be fulfilled subject to the cross-modality task. Equipped with the searched architecture, our method outperforms state-of-the-art counterparts in both two benchmarks, improving the Rank-1/mAP by 6.70%/6.13% on SYSU-MM01 and by 12.17%/11.23% on RegDB. In light of its simplicity and effectiveness, we expect CM-NAS will serve as a strong baseline for future research. Code will be made available.


翻译:可见的红外线人再识别(VI-REID)旨在匹配跨模式行人图像,打破在黑暗环境中单一模式人再识别的限制,打破单一模式的人在黑暗环境中的单一模式人再识别的限制。为了减轻大规模模式差异的影响,现有作品手工设计了各种双流结构,分别学习具体模式和模式可分配的表达方式。然而,这种手工设计例行程序高度依赖大规模实验和经验实践,这种实验和实验实践耗费时间和劳动密集。在本文中,我们系统地研究手工设计的建筑,并查明适当分离批次正常化(BN)层是大大推动跨模式匹配的关键。基于这一观察,基本目标是为BN层找到最佳的分离计划。为此,我们提议了一个名为跨模式神经结构搜索(CM-NAS)的新方法。它包括一个面向BN的搜索空间,根据交叉模式任务可以实现标准优化。在搜索结构中,我们的方法超越了跨模式匹配的跨模式。我们的方法,跨了跨模式匹配了跨模式匹配的跨模式匹配的跨模式匹配。基于这一观察,我们的方法将找到每个BNBNRV. 2301和SIS1-11的SIS1-13的基线,通过两个基准,将改进了我们SISBRBRBRBRBR.

0
下载
关闭预览

相关内容

【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
21+阅读 · 2021年4月20日
【康奈尔大学】度量数据粒度,Measuring Dataset Granularity
专知会员服务
12+阅读 · 2019年12月27日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
PTGAN for Person Re-Identification
统计学习与视觉计算组
4+阅读 · 2018年9月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
计算机视觉领域顶会CVPR 2018 接受论文列表
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年5月11日
Arxiv
6+阅读 · 2020年10月8日
Arxiv
11+阅读 · 2019年4月15日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
PTGAN for Person Re-Identification
统计学习与视觉计算组
4+阅读 · 2018年9月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
计算机视觉领域顶会CVPR 2018 接受论文列表
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Top
微信扫码咨询专知VIP会员