In this paper, we introduce a new representation for team-coordinated game-theoretic decision making, which we coin the team belief DAG (TB-DAG). In our representation, at every timestep, a team coordinator observes the information that is public to all its members, and then decides on a prescription for all the possible states consistent with its observations. Our representation unifies and extends recent approaches to team coordination. Similar to the approach of Carminati et al (2021), our TB-DAG can be used to capture adversarial team games, and enables standard, out-of-the-box game-theoretic techniques including no-regret learning (e.g., CFR and its state-of-the-art modern variants such as DCFR and PCFR+) and first-order methods. However, our representation can be exponentially smaller, and can be viewed as a lossless abstraction of theirs into a directed acyclic graph. In particular, like the LP-based algorithm of Zhang & Sandholm (2022), the size of our representation scales with the amount of information uncommon to the team; in fact, using linear programming on top of our TB-DAG to solve for a team correlated equilibrium in an adversarial team games recovers almost exactly their algorithm. Unlike that paper, however, our representation explicitly exposes the structure of the decision space, which is what enables the aforementioned game-theoretic techniques. Further, owing to a new and tighter definition of public information for a team, our representation can be exponentially tighter than that of Zhang & Sandholm (2022) in some cases.


翻译:在本文中,我们为团队协调的游戏理论决策引入了一种新的代表方式,这是我们给团队所认为的DAG(TB-DAG)创建的。在我们的代表方式中,团队协调员在每次时间步骤中都观察向所有成员公开的信息,然后根据观察意见决定所有可能的州处方。我们的代表方式统一并扩展了团队协调的最新方法。与Carminati等人(2021年)的做法相似,我们的TB-DAG可以用来捕捉对立团队的游戏,并能够实现标准、超越框的游戏理论技术,包括无雷学习(例如CFR及其最先进的现代变体,如DCFR和PCFR+)和一阶方法。然而,我们的代表方式可以大大缩小和扩展了所有可能的州。与Carminati等人(2021年)相似,我们的TB-DAG(LP)算法可以用来捕捉到对立团队的更接近的游戏和Sandholm(2022年),我们的代表比例尺度的规模与更接近于游戏的更近的游戏的游戏和最先进的现代现代变换的游戏,而更接近的LBMLBELA的游戏的游戏, 的游戏组的游戏,而使我们最接近于一个最接近的游戏的游戏的游戏的游戏的游戏的游戏的游戏的游戏的游戏结构的游戏的游戏的游戏的游戏的游戏结构的游戏组成为一个更精确的翻的游戏组。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月22日
Arxiv
0+阅读 · 2022年8月19日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员