In this paper, we introduce a new representation for team-coordinated game-theoretic decision making, which we coin the team belief DAG (TB-DAG). In our representation, at every timestep, a team coordinator observes the information that is public to all its members, and then decides on a prescription for all the possible states consistent with its observations. Our representation unifies and extends recent approaches to team coordination. Similar to the approach of Carminati et al (2021), our TB-DAG can be used to capture adversarial team games, and enables standard, out-of-the-box game-theoretic techniques including no-regret learning (e.g., CFR and its state-of-the-art modern variants such as DCFR and PCFR+) and first-order methods. However, our representation can be exponentially smaller, and can be viewed as a lossless abstraction of theirs into a directed acyclic graph. In particular, like the LP-based algorithm of Zhang & Sandholm (2022), the size of our representation scales with the amount of information uncommon to the team; in fact, using linear programming on top of our TB-DAG to solve for a team correlated equilibrium in an adversarial team games recovers almost exactly their algorithm. Unlike that paper, however, our representation explicitly exposes the structure of the decision space, which is what enables the aforementioned game-theoretic techniques. Further, owing to a new and tighter definition of public information for a team, our representation can be exponentially tighter than that of Zhang & Sandholm (2022) in some cases.
翻译:在本文中,我们为团队协调的游戏理论决策引入了一种新的代表方式,这是我们给团队所认为的DAG(TB-DAG)创建的。在我们的代表方式中,团队协调员在每次时间步骤中都观察向所有成员公开的信息,然后根据观察意见决定所有可能的州处方。我们的代表方式统一并扩展了团队协调的最新方法。与Carminati等人(2021年)的做法相似,我们的TB-DAG可以用来捕捉对立团队的游戏,并能够实现标准、超越框的游戏理论技术,包括无雷学习(例如CFR及其最先进的现代变体,如DCFR和PCFR+)和一阶方法。然而,我们的代表方式可以大大缩小和扩展了所有可能的州。与Carminati等人(2021年)相似,我们的TB-DAG(LP)算法可以用来捕捉到对立团队的更接近的游戏和Sandholm(2022年),我们的代表比例尺度的规模与更接近于游戏的更近的游戏的游戏和最先进的现代现代变换的游戏,而更接近的LBMLBELA的游戏的游戏, 的游戏组的游戏,而使我们最接近于一个最接近的游戏的游戏的游戏的游戏的游戏的游戏的游戏的游戏的游戏结构的游戏的游戏的游戏的游戏的游戏结构的游戏组成为一个更精确的翻的游戏组。