Natural gradient descent (NGD) provided deep insights and powerful tools to deep neural networks. However the computation of Fisher information matrix becomes more and more difficult as the network structure turns large and complex. This paper proposes a new optimization method whose main idea is to accurately replace the natural gradient optimization by reconstructing the network. More specifically, we reconstruct the structure of the deep neural network, and optimize the new network using traditional gradient descent (GD). The reconstructed network achieves the effect of the optimization way with natural gradient descent. Experimental results show that our optimization method can accelerate the convergence of deep network models and achieve better performance than GD while sharing its computational simplicity.


翻译:自然梯度下降(NGD)为深层神经网络提供了深刻的洞察力和强大的工具。然而,随着网络结构的变大和复杂,Fisher信息矩阵的计算变得越来越困难。本文提出了一种新的优化方法,其主要想法是通过重建网络来准确取代自然梯度优化。更具体地说,我们重建深层神经网络的结构,利用传统梯度下降(GD)优化新网络。重建后的网络实现了优化方式与自然梯度下降的效果。实验结果显示,我们的优化方法可以加快深层网络模型的融合,并在共享计算简单性的同时实现比GD更好的绩效。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
10+阅读 · 2021年11月3日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
5+阅读 · 2018年5月31日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员