Reconstructing the structure of the soil using non-invasive techniques is a very relevant problem in many scientific fields, like geophysics and archaeology. This can be done, for instance, with the aid of Frequency Domain Electromagnetic (FDEM) induction devices. Inverting FDEM data is a very challenging inverse problem, as the problem is extremely ill-posed, i.e., sensible to the presence of noise in the measured data, and non-linear. Regularization methods substitute the original ill-posed problem with a well-posed one whose solution is an accurate approximation of the desired one. In this paper we develop a regularization method to invert FDEM data. We propose to determine the electrical conductivity of the ground by solving a variational problem. The minimized functional is made up by the sum of two term: the data fitting term ensures that the recovered solution fits the measured data, while the regularization term enforces sparsity on the Laplacian of the solution. The trade-off between the two terms is determined by the regularization parameter. This is achieved by minimizing an $\ell_2 - \ell_q$ functional with $0 < q \leq 2$. Since the functional we wish to minimize is non-convex, we show that the variational problem admits a solution. Moreover, we prove that, if the regularization parameter is tuned accordingly to the amount of noise present in the data, this model induces a regularization method. Some selected numerical examples on synthetic and real data show the good performances of our proposal.


翻译:使用非侵入技术重建土壤结构在许多科学领域,例如地球物理学和考古学,都是一个非常相关的问题。例如,借助频度 Domain 电磁感应装置(FDEM) 的帮助,可以做到这一点。反转 FDEM 数据是一个极具挑战性的反向问题,因为这个问题极不可靠,即对测量数据中的噪音和非线性数据而言是明智的。常规化方法取代了最初的不成熟的合成问题,而其解决方案准确接近所希望的。在本文中,我们开发了一种正规化方法,用于倒转 FDEM 数据。我们建议通过解决变异问题来确定地面的电导率。最弱的功能由两个术语的总和组成:数据正确性术语确保回收的解决方案符合测量数据,而常规化术语则强化了解决方案的模型。两种术语之间的交易由常规化参数决定。在正度参数上,我们通过最小化一个 $\\ 值的功能性能变化数据显示一个不是正常的数值。

0
下载
关闭预览

相关内容

【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
32+阅读 · 2020年4月23日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月14日
Arxiv
0+阅读 · 2021年12月14日
Arxiv
6+阅读 · 2021年6月24日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员