Studying phenotype-gene association can uncover mechanism of diseases and develop efficient treatments. In complex disease where multiple phenotypes are available and correlated, analyzing and interpreting associated genes for each phenotype respectively may decrease statistical power and lose intepretation due to not considering the correlation between phenotypes. The typical approaches are many global testing methods, such as multivariate analysis of variance (MANOVA), which tests the overall association between phenotypes and each gene, without considersing the heterogeneity among phenotypes. In this paper, we extend and evaluate two p-value combination methods, adaptive weighted Fisher's method (AFp) and adaptive Fisher's method (AFz), to tackle this problem, where AFp stands out as our final proposed method, based on extensive simulations and a real application. Our proposed AFp method has three advantages over traditional global testing methods. Firstly, it can consider the heterogeneity of phenotypes and determines which specific phenotypes a gene is associated with, using phenotype specific 0-1 weights. Secondly, AFp takes the p-values from the test of association of each phenotype as input, thus can accommodate different types of phenotypes (continuous, binary and count). Thirdly, we also apply bootstrapping to construct a variability index for the weight estimator of AFp and generate a co-membership matrix to categorize (cluster) genes based on their association-patterns for intuitive biological investigations. Through extensive simulations, AFp shows superior performance over global testing methods in terms of type I error control and statistical power, as well as higher accuracy of 0-1 weights estimation over AFz. A real omics application with transcriptomic and clinical data of complex lung diseases demonstrates insightful biological findings of AFp.


翻译:研究phenotype- gene 协会可以发现疾病机制并发展高效治疗。 在多种苯型可以提供并相互关联的复杂疾病中,对每种苯型的相关基因分别进行分析和解释,可能会降低统计力,并且由于不考虑苯型之间的相互关系而导致不孕症。典型的方法是许多全球性测试方法,例如多变差异分析(MANOVA),该方法测试苯型和每种基因之间的总体关联,而不考虑苯型之间的异质性。在本文中,我们扩大和评估两种 p-val 组合方法,即适应的加权Fisher法(AFAFZ)和适应的Fisher法(AFZ),以不考虑苯型类型之间的关系。根据广泛的模拟和真实应用,我们提议的AFOP方法比传统的全球测试方法有三种优势。首先,它可以考虑苯型和每种苯型的异异性变异性变异性变异性变性变异性变异性变异性变异性变异性变异性变异性(我们用Special- comdeal deal commatial alial alial alideal alidealtide) lade recidudududududududeal ex ladeal macidududududududududududududududududududududu ex ex ex ex ex ex exal exal exal exal latide exal ladess ali ex excial excialtide extives算算算算算算算一种我们为一种不同性变一种不同性变变性变变变变变变变变性变性变性变性变性变性变性变性变性变性变性变性变性变性变变性变性变变变变性变性变性变性变性变性变性变性变性变为一种变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变变性变性变性变性变性变性变性变性变性变性变

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
专知会员服务
52+阅读 · 2020年9月7日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
论文浅尝 | Distant Supervision for Relation Extraction
开放知识图谱
4+阅读 · 2017年12月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
专知会员服务
52+阅读 · 2020年9月7日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
论文浅尝 | Distant Supervision for Relation Extraction
开放知识图谱
4+阅读 · 2017年12月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员