In 2006, Arnold, Falk, and Winther developed finite element exterior calculus, using the language of differential forms to generalize the Lagrange, Raviart-Thomas, Brezzi-Douglas-Marini, and N\'ed\'elec finite element spaces for simplicial triangulations. In a recent paper, Licht asks whether, on a single simplex, one can construct bases for these spaces that are invariant with respect to permuting the vertices of the simplex. For scalar fields, standard bases all have this symmetry property, but for vector fields, this question is more complicated: such invariant bases may or may not exist, depending on the polynomial degree of the element. In dimensions two and three, Licht constructs such invariant bases for certain values of the polynomial degree $r$, and he conjectures that his list is complete, that is, that no such basis exists for other values of $r$. In this paper, we show that Licht's conjecture is true in dimension two. However, in dimension three, we show that Licht's ideas can be extended to give invariant bases for many more values of $r$; we then show that this new larger list is complete. Along the way, we develop a more general framework for the geometric decomposition ideas of Arnold, Falk, and Winther.
翻译:2006年,Arnold, Falk和Winther开发了有限的元素外微积分。 2006年,Arnold, Falk和Winther开发了有限的元素外微积分,使用不同形式的语言将Lagrange、Raviart-Thomas、Brezzi-Douglas-Marini和N\'ed\'elec 元素内微缩缩缩缩微微微数放大。 在最近的一篇论文中, Licht询问, 是否可以在一个简单x上为这些空格建基, 这些空格与简单x的顶端有关。 对于缩略微数字段, 标准基数都具有这种对称属性属性, 但对于矢量字段来说, 这个问题更为复杂: 这种不固定的基数可能存在, 取决于元素的多元度。 在第二和第三维度上, 利赫特为多元度的某些值构建了这种不固定的基数, 也就是说, 美元的其他值不存在这样的基数。 在本文中, 利赫特的基数中, 我们展示了更深层的基数框架中, 。