The problem of rapid and automated detection of distinct market regimes is a topic of great interest to financial mathematicians and practitioners alike. In this paper, we outline an unsupervised learning algorithm for clustering financial time-series into a suitable number of temporal segments (market regimes). As a special case of the above, we develop a robust algorithm that automates the process of classifying market regimes. The method is robust in the sense that it does not depend on modelling assumptions of the underlying time series as our experiments with real datasets show. This method -- dubbed the Wasserstein $k$-means algorithm -- frames such a problem as one on the space of probability measures with finite $p^\text{th}$ moment, in terms of the $p$-Wasserstein distance between (empirical) distributions. We compare our WK-means approach with a more traditional clustering algorithms by studying the so-called maximum mean discrepancy scores between, and within clusters. In both cases it is shown that the WK-means algorithm vastly outperforms all considered competitor approaches. We demonstrate the performance of all approaches both in a controlled environment on synthetic data, and on real data.


翻译:快速和自动发现不同市场制度的问题是金融数学家和从业者都非常感兴趣的一个专题。在本文中,我们概述了将金融时间序列组合成适当数量的时段(市场制度)的不受监督的学习算法。作为上述一个特例,我们开发了一种强大的算法,使市场制度分类过程自动化。这个方法很健全,因为它并不象我们用真实数据集进行的实验所显示的那样,取决于对基本时间序列的模型假设。这种方法 -- -- 称为瓦西斯坦 $k$-poors 运算法 -- -- 将问题标为用有限 $p{text{th} 时间段计量概率空间的问题,以美元/Wasserstein在(精神上)分布之间的距离为单位。我们通过研究所谓的最大平均差分数和组内的数据,将我们的WK手段方法与较传统的组算法进行比较。在这两种情况下,WK手段都显示WK手段大大超越了所有据认为的兼容性方法。我们展示了在受控的合成数据环境中和数据环境中的所有方法的性。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
152+阅读 · 2020年5月26日
【Manning新书】现代Java实战,592页pdf
专知会员服务
98+阅读 · 2020年5月22日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Consistency of invariance-based randomization tests
Arxiv
0+阅读 · 2021年12月20日
Arxiv
0+阅读 · 2021年12月16日
Hyperspherical Variational Auto-Encoders
Arxiv
4+阅读 · 2018年9月26日
Arxiv
6+阅读 · 2018年3月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员