University admission at many highly selective institutions uses a holistic review process, where all aspects of the application, including protected attributes (e.g., race, gender), grades, essays, and recommendation letters are considered, to compose an excellent and diverse class. In this study, we empirically evaluate how influential protected attributes are for predicting admission decisions using a machine learning (ML) model, and in how far textual information (e.g., personal essay, teacher recommendation) may substitute for the loss of protected attributes in the model. Using data from 14,915 applicants to an undergraduate admission office at a selective U.S. institution in the 2022-2023 cycle, we find that the exclusion of protected attributes from the ML model leads to substantially reduced admission-prediction performance. The inclusion of textual information via both a TF-IDF representation and a Latent Dirichlet allocation (LDA) model partially restores model performance, but does not appear to provide a full substitute for admitting a similarly diverse class. In particular, while the text helps with gender diversity, the proportion of URM applicants is severely impacted by the exclusion of protected attributes, and the inclusion of new attributes generated from the textual information does not recover this performance loss.
翻译:暂无翻译