We present streaming algorithms for the graph $k$-matching problem in both the insert-only and dynamic models. Our algorithms, with space complexity matching the best upper bounds, have optimal or near-optimal update time, significantly improving on previous results. More specifically, for the insert-only streaming model, we present a one-pass algorithm with optimal space complexity $O(k^2)$ and optimal update time $O(1)$, that with high probability computes a maximum weighted $k$-matching of a given weighted graph. The update time of our algorithm significantly improves the previous upper bound of $O(\log k)$, which was derived only for $k$-matching on unweighted graphs. For the dynamic streaming model, we present a one-pass algorithm that with high probability computes a maximum weighted $k$-matching in $O(Wk^2 \cdot \mbox{polylog}(n)$ space and with $O(\mbox{polylog}(n))$ update time, where $W$ is the number of distinct edge weights. Again the update time of our algorithm improves the previous upper bound of $O(k^2 \cdot \mbox{polylog}(n))$. This algorithm, when applied to unweighted graphs, gives a streaming algorithm on the dynamic model whose space and update time complexities are both near-optimal. Our results also imply a streaming approximation algorithm for maximum weighted $k$-matching whose space complexity matches the best known upper bound with a significantly improved update time.
翻译:暂无翻译