We devise deep nearest centroids (DNC), a conceptually elegant yet surprisingly effective network for large-scale visual recognition, by revisiting Nearest Centroids, one of the most classic and simple classifiers. Current deep models learn the classifier in a fully parametric manner, ignoring the latent data structure and lacking simplicity and explainability. DNC instead conducts nonparametric, case-based reasoning; it utilizes sub-centroids of training samples to describe class distributions and clearly explains the classification as the proximity of test data and the class sub-centroids in the feature space. Due to the distance-based nature, the network output dimensionality is flexible, and all the learnable parameters are only for data embedding. That means all the knowledge learnt for ImageNet classification can be completely transferred for pixel recognition learning, under the "pre-training and fine-tuning" paradigm. Apart from its nested simplicity and intuitive decision-making mechanism, DNC can even possess ad-hoc explainability when the sub-centroids are selected as actual training images that humans can view and inspect. Compared with parametric counterparts, DNC performs better on image classification (CIFAR-10, ImageNet) and greatly boots pixel recognition (ADE20K, Cityscapes), with improved transparency and fewer learnable parameters, using various network architectures (ResNet, Swin) and segmentation models (FCN, DeepLabV3, Swin). We feel this work brings fundamental insights into related fields.


翻译:我们设计了一个概念上优雅但令人惊讶的有效大范围的视觉识别网络(DNC),这是一个概念上优雅但令人惊讶的有效网络,通过重访最经典和最简单的分类师之一的近地点中心,我们设计了一个概念上最接近的中央机器人(DNC),目前深层次的模型以完全分解的方式学习分类器,忽视了潜在的数据结构,缺乏简洁和解释性。DNC采用非对称、基于案例的推理;它使用培训样本的子中心机器人来描述班级分布,并清楚地解释测试数据与地物空间中等级的子中心之间的接近程度。由于以距离为基础的性质,网络产出的维度是灵活的,所有可学习的参数仅用于数据嵌入。这意味着在“预培训和微调”模式下,所有为图像网络分类而学的所有知识都可以完全用于像素识别学习。除了其固定的简单简洁和直观的决策机制外,DNNC甚至可以将子机器人分类作为人类能够查看和检查的实际培训图像图象的近地点(REB),将S-10基本参数与S-K模型进行比较进行对比,DNCS-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B--B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-</s>

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员