Multi-agent reinfocement learning (MARL) is often modeled using the framework of Markov games (also called stochastic games or dynamic games). Most of the existing literature on MARL concentrates on zero-sum Markov games but is not applicable to general-sum Markov games. It is known that the best-response dynamics in general-sum Markov games are not a contraction. Therefore, different equilibrium in general-sum Markov games can have different values. Moreover, the Q-function is not sufficient to completely characterize the equilibrium. Given these challenges, model based learning is an attractive approach for MARL in general-sum Markov games. In this paper, we investigate the fundamental question of \emph{sample complexity} for model-based MARL algorithms in general-sum Markov games and show that $\tilde{\mathcal{O}}(|\mathcal{S}|\,|\mathcal{A}| (1-\gamma)^{-2} \alpha^{-2})$ samples are sufficient to obtain a $\alpha$-approximate Markov perfect equilibrium with high probability, where $\mathcal{S}$ is the state space, $\mathcal{A}$ is the joint action space of all players, and $\gamma$ is the discount factor, and the $\tilde{\mathcal{O}}(\cdot)$ notation hides logarithmic terms. To obtain these results, we study the robustness of Markov perfect equilibrium to model approximations. We show that the Markov perfect equilibrium of an approximate (or perturbed) game is always an approximate Markov perfect equilibrium of the original game and provide explicit bounds on the approximation error. We illustrate the results via a numerical example.


翻译:MARL 中的大多数现有文献都集中在零和马可夫游戏上,但不适用于普通和马可夫游戏。众所周知,一般和马可夫游戏中的最佳反应动态并不是缩缩。因此,一般和马可夫游戏中的不同平衡值可能不同。此外,一般和马可夫游戏中不同的平衡值不足以完全描述平衡。鉴于这些挑战,模型学习对一般马可夫游戏(也称为随机游戏或动态游戏)中马可夫游戏是一种吸引的方法。在本文中,我们调查基于模型的马可洛游戏中的马可夫游戏的基本问题。众所周知,一般和马可夫游戏中的最佳反应动态动力并不是缩缩缩缩。因此,一般和马可夫游戏中的不同平衡值可能不同值。此外,一般和马可夫游戏中的不同平衡值不足以完全描述平衡。鉴于这些挑战,在一般马可言游戏中,基于模型的学习方法对于MARL是一种有吸引力的方法。在一般和马尔科夫游戏中以高概率衡量的马可达美货币的完美。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年11月27日
Arxiv
0+阅读 · 2021年11月26日
Arxiv
0+阅读 · 2021年11月25日
Arxiv
3+阅读 · 2018年8月17日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员