High-dimensional mean vector testing problem for two or more groups remain a very active research area. In these setting, traditional tests are not applicable because they involve the inversion of rank deficient group covariance matrix. In current approaches, this problem is addressed by simply looking at a test assuming a sparse or diagonal covariance matrix potentially ignoring complex dependency between features. In this paper, we develop a Bayes factor (BF) based testing procedure for comparing two or more population means in (very) high dimensional settings. Two versions of the Bayes factor based test statistics are considered which are based on a Random projection (RP) approach. RPs are appealing since they make not assumption about the form of the dependency across features in the data. The final test statistic is based on an ensemble of Bayes factors corresponding to multiple replications of randomly projected data. Both proposed test statistics are compared through a battery of simulation settings. Finally they are applied to the analysis of a publicly available genomic single cell RNA-seq (scRNA-seq) dataset.


翻译:两种或两种以上组群的高维中位矢量测试问题仍然是一个非常活跃的研究领域。在这些环境中,传统测试并不适用,因为它们涉及排位不足的群居共变矩阵的反转。在目前的方法中,这一问题的解决只是通过假设一个测试,假设一个稀疏或对等的共变矩阵可能忽略不同特征之间的复杂依赖性。在本文件中,我们开发了一个基于贝亚因(BF)的测试程序,用于比较(非常)高维环境中两种或两种以上人口手段。两种基于贝亚系数的测试统计数据都以随机投影(RP)方法为基础。RPS具有吸引力,因为它们没有假设数据各特征之间依赖性的形式。最后的测试统计基于一系列与随机预测数据重复相对应的海湾因素。两种拟议的测试统计数据都是通过模拟设置的电池进行比较的。最后,它们被用于分析公开提供的单细胞RNA-seq(scRNA-seq)数据集。

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Risk and optimal policies in bandit experiments
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员