Due to fluctuations in past radiocarbon ($^{14}$C) levels, calibration is required to convert $^{14}$C determinations $X_i$ into calendar ages $\theta_i$. In many studies, we wish to calibrate a set of related samples taken from the same site or context, which have calendar ages drawn from the same shared, but unknown, density $f(\theta)$. Calibration of $X_1, \ldots, X_n$ can be improved significantly by incorporating the knowledge that the samples are related. Furthermore, summary estimates of the underlying shared $f(\theta)$ can provide valuable information on changes in population size/activity over time. Most current approaches require a parametric specification for $f(\theta)$ which is often not appropriate. We develop a rigorous non-parametric Bayesian approach using a Dirichlet process mixture model, with slice sampling to address the multimodality typical within $^{14}$C calibration. Our approach simultaneously calibrates the set of $^{14}$C determinations and provides a predictive estimate for the underlying calendar age of a future sample. We show, in a simulation study, the improvement in calendar age estimation when jointly calibrating related samples using our approach, compared with calibration of each $^{14}$C determination independently. We also illustrate the use of the predictive calendar age estimate to provide insight on activity levels over time using three real-life case studies.


翻译:由于过去的放射性碳(++14美元)水平的波动,需要校准将美元14美元(X_I)美元(美元)的确定值转换成日历年龄($theta_i美元)。在许多研究中,我们希望校准从同一地点或背景中采集的一组相关样本,这些样本的日历年数来自相同共享但未知的密度(美元)美元(美元)。通过纳入样本相关知识,可以大大改进X_1美元(美元)的校准。此外,对基底共享美元(美元)的估算值可以提供关于人口规模/活动随时间变化的宝贵信息。大多数当前方法都需要对美元(美元)或上下文中的一组相关样本进行参数性说明,而这些样本通常不合适。我们利用Drichlet进程混合模型制定严格的非参数性巴耶斯办法,通过切片取样解决典型的多式(美元14美元)C校准成本。我们的方法同时校准美元(美元)的确定值(美元)C)的一套确定值,并提供美元预测性估算值(美元)时间(美元)的精确度估计数,用于对未来校准样本的每个校准年龄进行对比研究时,我们用相关的校准的校准的校准的校准的校准的校准分析。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
【资源】文本风格迁移相关资源汇总
专知
13+阅读 · 2020年7月11日
ICLR 2020 高质量强化学习论文汇总
极市平台
12+阅读 · 2019年11月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
3+阅读 · 2018年8月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
21+阅读 · 2019年8月21日
Arxiv
4+阅读 · 2018年1月15日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
【资源】文本风格迁移相关资源汇总
专知
13+阅读 · 2020年7月11日
ICLR 2020 高质量强化学习论文汇总
极市平台
12+阅读 · 2019年11月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
3+阅读 · 2018年8月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员