Smart glasses are rapidly gaining advanced functions thanks to cutting-edge computing technologies, especially accelerated hardware architectures, and tiny Artificial Intelligence (AI) algorithms. However, integrating AI into smart glasses featuring a small form factor and limited battery capacity remains challenging for a satisfactory user experience. To this end, this paper proposes the design of a smart glasses platform for always-on on-device object detection with an all-day battery lifetime. The proposed platform is based on GAP9, a novel multi-core RISC-V processor from Greenwaves Technologies. Additionally, a family of sub-million parameter TinyissimoYOLO networks are proposed. They are benchmarked on established datasets, capable of differentiating up to 80 classes on MS-COCO. Evaluations on the smart glasses prototype demonstrate TinyissimoYOLO's inference latency of only 17ms and consuming 1.59mJ energy per inference. An end-to-end latency of 56ms is achieved which is equivalent to 18 frames per seconds (FPS) with a total power consumption of 62.9mW. This ensures continuous system runtime of up to 9.3 hours on a 154mAh battery. These results outperform MCUNet (TinyNAS+TinyEngine), which runs a simpler task (image classification) at just 7.3 FPS, while the 18 FPS achieved in this paper even include image-capturing, network inference, and detection post-processing. The algorithm's code is released open with this paper and can be found here: https://github.com/ETH-PBL/TinyissimoYOLO
翻译:暂无翻译