A monoped's jump height and energy consumption depend on both, its mechanical design and control strategy. Existing co-design frameworks typically optimize for either maximum height or minimum energy, neglecting their trade-off. They also often omit gearbox parameter optimization and use oversimplified actuator mass models, producing designs difficult to replicate in practice. In this work, we introduce a novel three-stage co-design optimization framework that jointly maximizes jump height while minimizing mechanical energy consumption of a monoped. The proposed method explicitly incorporates realistic actuator mass models and optimizes mechanical design (including gearbox) and control parameters within a unified framework. The resulting design outputs are then used to automatically generate a parameterized CAD model suitable for direct fabrication, significantly reducing manual design iterations. Our experimental evaluations demonstrate a 50 percent reduction in mechanical energy consumption compared to the baseline design, while achieving a jump height of 0.8m. Video presentation is available at http://y2u.be/XW8IFRCcPgM
翻译:暂无翻译