The importance of automated and objective monitoring of dietary behavior is becoming increasingly accepted. The advancements in sensor technology along with recent achievements in machine-learning--based signal-processing algorithms have enabled the development of dietary monitoring solutions that yield highly accurate results. A common bottleneck for developing and training machine learning algorithms is obtaining labeled data for training supervised algorithms, and in particular ground truth annotations. Manual ground truth annotation is laborious, cumbersome, can sometimes introduce errors, and is sometimes impossible in free-living data collection. As a result, there is a need to decrease the labeled data required for training. Additionally, unlabeled data, gathered in-the-wild from existing wearables (such as Bluetooth earbuds) can be used to train and fine-tune eating-detection models. In this work, we focus on training a feature extractor for audio signals captured by an in-ear microphone for the task of eating detection in a self-supervised way. We base our approach on the SimCLR method for image classification, proposed by Chen et al. from the domain of computer vision. Results are promising as our self-supervised method achieves similar results to supervised training alternatives, and its overall effectiveness is comparable to current state-of-the-art methods. Code is available at https://github.com/mug-auth/ssl-chewing .


翻译:对饮食行为进行自动化和客观监测的重要性日益得到人们的接受。传感器技术的进步以及基于机器学习的信号处理算法的最近成就使得能够开发出产生高度准确结果的饮食监测解决方案。开发和培训机器学习算法的一个常见瓶颈是,为培训受监督的算法,特别是地面真相说明,正在获得标签数据。人工地面真相说明是艰苦的、繁琐的,有时会引入错误,有时在自由生活数据收集中也不可能。因此,有必要减少培训所需的标签数据。此外,从现有磨损器(如蓝牙耳膜)中收集的未贴标签数据可以用来培训和微调的饮食监测模型。在这项工作中,我们的重点是为用一台内耳麦克风捕捉到的音频信号培训一个功能提取器,以便以自我监视的方式进行饮食检测。我们的方法以Chen et al提出的SimCLR图像分类方法为基础。此外,从计算机视野的域域域(如蓝牙耳耳耳耳耳等)收集的无标签数据,可以用来培训和微调饮食检测模型模式。结果作为我们目前监督的替代方法的可比较方法。结果有希望获得。在计算机领域进行自我监督的可靠。在目前进行自我监督的系统上取得。

0
下载
关闭预览

相关内容

【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
75+阅读 · 2020年4月24日
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
论文浅尝 | Distant Supervision for Relation Extraction
开放知识图谱
4+阅读 · 2017年12月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关VIP内容
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
75+阅读 · 2020年4月24日
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
论文浅尝 | Distant Supervision for Relation Extraction
开放知识图谱
4+阅读 · 2017年12月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员