Scharfstein et al. (2021) developed a sensitivity analysis model for analyzing randomized trials with repeatedly measured binary outcomes that are subject to nonmonotone missingness. Their approach becomes computationally intractable when the number of repeated measured is large (e.g., greater than 15). In this paper, we repair this problem by introducing an $m$th-order Markovian restriction. We establish an identification by representing the model as a directed acyclic graph (DAG). We illustrate our methodology in the context of a randomized trial designed to evaluate a web-delivered psychosocial intervention to reduce substance use, assessed by testing urine samples twice weekly for 12 weeks, among patients entering outpatient addiction treatment. We evaluate the finite sample properties of our method in a realistic simulation study. Our methods have been integrated into the R package entitled slabm.


翻译:Scharfstein等人(2021年)开发了一个敏感度分析模型,用于分析随机试验,反复测量结果的二进制试验结果,这些结果可能会出现无血球缺失,当反复测量的数量大(例如超过15)时,其方法在计算上变得难以操作。在本文中,我们通过引入一个价值百万的Markovian订单限制来弥补这一问题。我们通过将模型作为定向循环图(DAG)来确立一种识别方法。我们用随机试验来说明我们的方法,目的是评估网络提供的减少药物使用的社会心理干预的方法,通过每周两次对进入门诊戒毒治疗的病人进行尿样测试,为期12周。我们在现实的模拟研究中评估我们方法的有限抽样特性。我们的方法已经被纳入名为Slabm的R包中。

0
下载
关闭预览

相关内容

一图掌握《可解释人工智能XAI》操作指南
专知会员服务
59+阅读 · 2021年5月3日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Arxiv
0+阅读 · 2021年7月8日
VIP会员
相关VIP内容
一图掌握《可解释人工智能XAI》操作指南
专知会员服务
59+阅读 · 2021年5月3日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员