Image aesthetics assessment (IAA) is a challenging task due to its highly subjective nature. Most of the current studies rely on large-scale datasets (e.g., AVA and AADB) to learn a general model for all kinds of photography images. However, little light has been shed on measuring the aesthetic quality of artistic images, and the existing datasets only contain relatively few artworks. Such a defect is a great obstacle to the aesthetic assessment of artistic images. To fill the gap in the field of artistic image aesthetics assessment (AIAA), we first introduce a large-scale AIAA dataset: Boldbrush Artistic Image Dataset (BAID), which consists of 60,337 artistic images covering various art forms, with more than 360,000 votes from online users. We then propose a new method, SAAN (Style-specific Art Assessment Network), which can effectively extract and utilize style-specific and generic aesthetic information to evaluate artistic images. Experiments demonstrate that our proposed approach outperforms existing IAA methods on the proposed BAID dataset according to quantitative comparisons. We believe the proposed dataset and method can serve as a foundation for future AIAA works and inspire more research in this field. Dataset and code are available at: https://github.com/Dreemurr-T/BAID.git


翻译:图片的审美评估是一项具有高度主观性的挑战性任务。目前大多数研究依赖于大规模数据集(例如AVA和AADB)来学习适用于所有类型摄影图像的通用模型。然而,对于衡量艺术图片的美学质量几乎没有研究,现有数据集只包含相对较少的艺术作品。这种缺陷对于艺术图片的审美评估是一个巨大的障碍。为了填补艺术图片审美评估领域的空白,我们首先引入了一个大规模的艺术图片数据集:Boldbrush艺术图片数据集(BAID),其中包括60,337幅涵盖各种艺术形式的艺术作品,具有超过360,000个在线用户的投票。然后,我们提出了一种新方法-SAAN(特定风格艺术评估网络),它可以有效提取和利用风格特定和通用的审美信息来评估艺术图片。实验证明,我们提出的方法在提出的BAID数据集上优于现有的IAA方法,根据定量比较。我们相信,所提出的数据集和方法可以作为未来AIAA工作的基础,并激发更多关于这一领域的研究。数据集和代码可在此处下载:https://github.com/Dreemurr-T/BAID.git

1
下载
关闭预览

相关内容

艺术迄今依旧没有公认的定义,目前广义的艺术乃是由具有智能思考能力的动物,透过各种形式及工具以表达其情感与意识,因而产生的结果。艺术不只存在于人类社会中,也存在于其他相对高等的动物。
Nat. Methods | MSNovelist:从质谱生成小分子结构的新方法
专知会员服务
4+阅读 · 2022年6月22日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【泡泡汇总】最强 SLAM Datasets 合辑
泡泡机器人SLAM
17+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
6+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
12+阅读 · 2018年1月11日
VIP会员
相关VIP内容
Nat. Methods | MSNovelist:从质谱生成小分子结构的新方法
专知会员服务
4+阅读 · 2022年6月22日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关基金
国家自然科学基金
6+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员