项目名称: 基于时空统计方法的多源定量遥感产品融合方法研究

项目编号: No.41271347

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 天文学、地球科学

项目作者: 柏延臣

作者单位: 北京师范大学

项目金额: 75万元

中文摘要: 由单一传感器反演得到的地表特征参量定量遥感产品存在时空完整性低、精度不够高、反映地表时空变化不连续、空间分辨率单一、不同传感器反演得到的数据间缺少物理意义上的一致性等问题。如何利用多传感器遥感产品在时空完整性、精度等方面的互补性,融合多传感器的定量遥感产品生成时空完整、高精度、一致、时空连续的遥感产品,是当前定量遥感产品生成中需要解决的重要问题。本项目针对这一问题,研究不依赖于动力学过程模型,基于时空统计方法融合多源定量遥感产品的方法。具体地,项目将以LAI、SST和AOD参量的多源遥感产品融合为例,分别研究基于时空地统计学贝叶斯最大熵方法(BME)和层次贝叶斯方法(BHM)两种时空统计方法的多源遥感数据融合方法,重点研究时空统计多源遥感产品融合中不确定性的表达、先验知识的获取与表达、时空过程模型的构建和计算方法,生成研究区样例数据集,并开发软件原型。

中文关键词: 时空统计;数据融合;遥感;不确定性分析;贝叶斯估计

英文摘要: The high level land,water and atmospheric remote sensing products that derived from a single sensor observation has to face problems of the spatio-temporal incompleteness, low accuracy, and less continuity in space and time.However, products from different sensors may be complementary in uncertainties and spatio-temporal completeness. It is potential to merging these complementary products to generate an improved suite of products with improved accuracy and spatio-temporal completeness.However, the method on merging multi-source high level remote sensing products to generate high accuracy and spatio-temporally complete products with various spatial resoution is less investigated so far. The overall objective of this project is develop the methods for merging the multi-source high level remote sensing products based on the spatio-temporal statistics.Specifically, we will develop the remote sensing products merging methods based on two spatio-temporal statistical models. The first one is the BME framework that is based on the modern spatio-temporal geostatistics, and the second one is the hiararchical bayesian modeling.we aim to build the efficient workflows for merging the multi-source high level remote sensing products in both BME and the HBM frameworks.The key techniques involved in this study are:(1) How to a

英文关键词: Spatio-temporal statistics;Data Fusion;Remote Sensing;uncertainty Analysis;bayesian estimation

成为VIP会员查看完整内容
0

相关内容

顾及时空特征的地理知识图谱构建方法
专知会员服务
54+阅读 · 2022年2月15日
基于流线的流场可视化绘制方法综述
专知会员服务
27+阅读 · 2021年12月9日
【博士论文】开放环境下的度量学习研究
专知会员服务
49+阅读 · 2021年12月4日
专知会员服务
88+阅读 · 2021年9月4日
专知会员服务
73+阅读 · 2021年4月8日
基于生理信号的情感计算研究综述
专知会员服务
62+阅读 · 2021年2月9日
专知会员服务
109+阅读 · 2020年12月22日
基于深度学习的数据融合方法研究综述
专知会员服务
141+阅读 · 2020年12月10日
专知会员服务
46+阅读 · 2020年11月13日
基于深度学习的表面缺陷检测方法综述
专知会员服务
94+阅读 · 2020年5月31日
大厂产品做需求时,一定会遵循的三大法则
人人都是产品经理
0+阅读 · 2022年2月22日
基于流线的流场可视化绘制方法综述
专知
0+阅读 · 2021年12月9日
【干货书】概率,统计与数据,513页pdf
专知
35+阅读 · 2021年11月27日
【WWW2021】基于知识嵌入的图卷积网络
专知
0+阅读 · 2021年4月27日
基于深度学习的行人检测方法综述
专知
1+阅读 · 2021年4月14日
基于深度学习的数据融合方法研究综述
专知
31+阅读 · 2020年12月10日
【干货书】贝叶斯推断随机过程,449页pdf
专知
29+阅读 · 2020年8月27日
图像分割的U-Net系列方法
极市平台
56+阅读 · 2019年10月21日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
2+阅读 · 2022年4月20日
Arxiv
31+阅读 · 2021年6月30日
Deep learning for cardiac image segmentation: A review
Arxiv
21+阅读 · 2019年11月9日
Arxiv
11+阅读 · 2018年9月28日
小贴士
相关主题
相关VIP内容
顾及时空特征的地理知识图谱构建方法
专知会员服务
54+阅读 · 2022年2月15日
基于流线的流场可视化绘制方法综述
专知会员服务
27+阅读 · 2021年12月9日
【博士论文】开放环境下的度量学习研究
专知会员服务
49+阅读 · 2021年12月4日
专知会员服务
88+阅读 · 2021年9月4日
专知会员服务
73+阅读 · 2021年4月8日
基于生理信号的情感计算研究综述
专知会员服务
62+阅读 · 2021年2月9日
专知会员服务
109+阅读 · 2020年12月22日
基于深度学习的数据融合方法研究综述
专知会员服务
141+阅读 · 2020年12月10日
专知会员服务
46+阅读 · 2020年11月13日
基于深度学习的表面缺陷检测方法综述
专知会员服务
94+阅读 · 2020年5月31日
相关资讯
大厂产品做需求时,一定会遵循的三大法则
人人都是产品经理
0+阅读 · 2022年2月22日
基于流线的流场可视化绘制方法综述
专知
0+阅读 · 2021年12月9日
【干货书】概率,统计与数据,513页pdf
专知
35+阅读 · 2021年11月27日
【WWW2021】基于知识嵌入的图卷积网络
专知
0+阅读 · 2021年4月27日
基于深度学习的行人检测方法综述
专知
1+阅读 · 2021年4月14日
基于深度学习的数据融合方法研究综述
专知
31+阅读 · 2020年12月10日
【干货书】贝叶斯推断随机过程,449页pdf
专知
29+阅读 · 2020年8月27日
图像分割的U-Net系列方法
极市平台
56+阅读 · 2019年10月21日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员