Hawkes processes are point processes that model data where events occur in clusters through the self-exciting property of the intensity function. We consider a multivariate setting where multiple dimensions can influence each other with intensity function to allow for excitation and inhibition, both within and across dimensions. We discuss how such a model can be implemented and highlight challenges in the estimation procedure induced by a potentially negative intensity function. Furthermore, we introduce a new, stronger condition for stability that encompasses current approaches established in the literature. Finally, we examine the total number of offsprings to reparametrise the model and subsequently use Normal and sparsity-inducing priors in a Bayesian estimation procedure on simulated data.
翻译:Hawkes 过程是模拟数据过程,通过强度函数的自我激发特性,在集群内发生事件时,这些过程是模型数据。我们考虑一个多变量的设置,在这个设置中,多个维度可以相互影响,强度功能可以相互影响,允许在维度内和跨维度内和跨维度内进行刺激和抑制。我们讨论如何实施这种模型,并突出潜在负强度函数引起的估计程序的挑战。此外,我们为稳定性提出一个新的、更强大的条件,其中包括文献中确立的当前方法。最后,我们审查在模拟数据的贝叶斯估计程序中重新修复模型并随后使用常态和聚变的前奏的后代总数。