Face recognition has achieved revolutionary advancement owing to the advancement of the deep convolutional neural network (CNN). The central task of face recognition, including face verification and identification, involves face feature discrimination. However, traditional softmax loss of deep CNN usually lacks the power of discrimination. To address this problem, recently several loss functions such as central loss \cite{centerloss}, large margin softmax loss \cite{lsoftmax}, and angular softmax loss \cite{sphereface} have been proposed. All these improvement algorithms share the same idea: maximizing inter-class variance and minimizing intra-class variance. In this paper, we design a novel loss function, namely large margin cosine loss (LMCL), to realize this idea from a different perspective. More specifically, we reformulate the softmax loss as cosine loss by L2 normalizing both features and weight vectors to remove radial variation, based on which a cosine margin term \emph{$m$} is introduced to further maximize decision margin in angular space. As a result, minimum intra-class variance and maximum inter-class variance are achieved by normalization and cosine decision margin maximization. We refer to our model trained with LMCL as CosFace. To test our approach, extensive experimental evaluations are conducted on the most popular public-domain face recognition datasets such as MegaFace Challenge, Youtube Faces (YTF) and Labeled Face in the Wild (LFW). We achieve the state-of-the-art performance on these benchmark experiments, which confirms the effectiveness of our approach.


翻译:由于深层神经神经网络(CNN)的进步,面部识别(包括面部核查和识别)取得了革命性的进展。面部识别的核心任务包括面部识别,涉及面部特征歧视。然而,传统的深有CNN软体丢失通常缺乏歧视的力量。为了解决这一问题,最近出现了一些损失功能,例如中央损失\ cite{centerlossolth},大软体失差\ cite{lsoftmax},以及角软体形损失\cite{cite{sphereface}。所有这些改进算法都有着相同的理念:尽可能扩大阶级间差异和尽量减少阶级内部差异。在本文件中,我们设计了一个新的损失功能,即大差额连带损失(LMCLL),以便从不同的角度实现这个概念。更具体地说,我们重新配置软体系损失,通过L2的特性和重量矢量的矢量损失来消除辐射性损失。根据这个方法,一个直面比值术语术语定义{emph{m} 引入了相同的算法:在一个空间中进一步最大化决定。我们所理解的度差差差值。我们做了这样的实验中,我们做了最深层次判断。我们做了最深的内变数级判断,我们最深的数值比值,我们做了最深的数值检验了这些比值。

1
下载
关闭预览

相关内容

商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
15+阅读 · 2020年4月28日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
中国团以98%精度夺得MegaFace人脸识别冠军(开源)
全球人工智能
5+阅读 · 2018年3月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2020年3月17日
Arxiv
5+阅读 · 2019年2月28日
Arxiv
5+阅读 · 2018年12月18日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
11+阅读 · 2018年1月18日
Arxiv
3+阅读 · 2017年11月12日
VIP会员
相关VIP内容
相关资讯
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
中国团以98%精度夺得MegaFace人脸识别冠军(开源)
全球人工智能
5+阅读 · 2018年3月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
5+阅读 · 2020年3月17日
Arxiv
5+阅读 · 2019年2月28日
Arxiv
5+阅读 · 2018年12月18日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
11+阅读 · 2018年1月18日
Arxiv
3+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员