Convolutional neural networks have significantly boosted the performance of face recognition in recent years due to its high capacity in learning discriminative features. To enhance the discriminative power of the Softmax loss, multiplicative angular margin and additive cosine margin incorporate angular margin and cosine margin into the loss functions, respectively. In this paper, we propose a novel supervisor signal, additive angular margin (ArcFace), which has a better geometrical interpretation than supervision signals proposed so far. Specifically, the proposed ArcFace $\cos(\theta + m)$ directly maximise decision boundary in angular (arc) space based on the L2 normalised weights and features. Compared to multiplicative angular margin $\cos(m\theta)$ and additive cosine margin $\cos\theta-m$, ArcFace can obtain more discriminative deep features. We also emphasise the importance of network settings and data refinement in the problem of deep face recognition. Extensive experiments on several relevant face recognition benchmarks, LFW, CFP and AgeDB, prove the effectiveness of the proposed ArcFace. Most importantly, we get state-of-art performance in the MegaFace Challenge in a totally reproducible way. We make data, models and training/test code public available~\footnote{https://github.com/deepinsight/insightface}.


翻译:近些年来,由于在学习歧视性特征方面能力强,革命性神经网络大幅提升了面部识别的绩效。为了增强软体损失、多复制角边和添加性焦内边的歧视性力量,将角边和余弦边分别纳入损失功能中。在本文件中,我们提议了一个新的监督员信号,添加角边边边际(ArcFace),这比迄今为止提出的监督信号具有更好的几何解释。具体来说,拟议的ArcFace $\cos (theta + m) $直接将角(arc) 空间的决策界限以L2 正常的重量和特征为基础,直接最大化。与倍复制性角边际差(m\\theta) $和添加性边际边际差($\cos\theta-m$, ArcFace) 可以得到比迄今提出的监督性深得多的深度特征。我们还强调网络设置和数据在深刻面部认识问题上的重要性。在几个相关的面识别基准上进行了广泛的实验,LFW、CFP和ADBDG。 相比,我们所能进行的挑战性培训的方式使挑战性模型能够完全地进行。

6
下载
关闭预览

相关内容

商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
CVPR2019 | ArcFace:构建高效的人脸识别系统(已开源)
极市平台
11+阅读 · 2019年5月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
Equalization Loss for Long-Tailed Object Recognition
Arxiv
5+阅读 · 2020年4月14日
Arxiv
5+阅读 · 2020年3月17日
Arxiv
5+阅读 · 2018年12月18日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关VIP内容
Top
微信扫码咨询专知VIP会员