Recently, there has been a panoptic segmentation task combining semantic and instance segmentation, in which the goal is to classify each pixel with the corresponding instance ID. In this work, we propose a solution to tackle the panoptic segmentation task. The overall structure combines the bottom-up method and the top-down method. Therefore, not only can there be better performance, but also the execution speed can be maintained. The network mainly pays attention to the quality of the mask. In the previous work, we can see that the uneven contour of the object is more likely to appear, resulting in low-quality prediction. Accordingly, we propose enhancement features and corresponding loss functions for the silhouette of objects and backgrounds to improve the mask. Meanwhile, we use the new proposed confidence score to solve the occlusion problem and make the network tend to use higher quality masks as prediction results. To verify our research, we used the COCO dataset and CityScapes dataset to do experiments and obtained competitive results with fast inference time.
翻译:最近,出现了一个将语义和实例分割相结合的全光分割任务, 目标是将每个像素与相应的例代号进行分类。 在这项工作中, 我们提出解决全光分割任务的办法。 总体结构将自下而上的方法和自上而下的方法结合起来。 因此, 不仅可以提高性能, 还可以保持执行速度。 网络主要关注面具的质量。 在先前的工作中, 我们可以看到, 对象的不均等距更有可能出现, 从而导致低质量的预测。 因此, 我们为对象和背景的环形提出增强功能和相应的损失功能来改进面具。 与此同时, 我们使用拟议的新信任度分数来解决封闭问题, 并使网络倾向于使用更高质量的面具作为预测结果。 为了验证我们的研究, 我们使用CO数据集和城市安全数据集来进行实验, 并快速推算获得竞争性结果 。