Sequential recommenders have made great strides in capturing a user's preferences. Nevertheless, the cold-start recommendation remains a fundamental challenge in which only a few user-item interactions are available for personalization. Gradient-based meta-learning approaches have recently emerged in the sequential recommendation field due to their fast adaptation and easy-to-integrate abilities. The meta-learning algorithms formulate the cold-start recommendation as a few-shot learning problem, where each user is represented as a task to be adapted. However, while meta-learning algorithms generally assume that task-wise samples are evenly distributed over classes or values, user-item interactions are not that way in real-world applications (e.g., watching favorite videos multiple times, leaving only good ratings and no bad ones). As a result, in the real-world, imbalanced user feedback that accounts for most task training data may dominate the user adaptation and prevent meta-learning algorithms from learning meaningful meta-knowledge for personalized recommendations. To alleviate this limitation, we propose a novel sequential recommendation framework based on gradient-based meta-learning that captures the imbalance of each user's rating distribution and accordingly computes adaptive loss for user-specific learning. It is the first work to tackle the impact of imbalanced ratings in cold-start sequential recommendation scenarios. We design adaptive weighted loss and improve the existing meta-learning algorithms for state-of-the-art sequential recommendation methods. Extensive experiments conducted on real-world datasets demonstrate the effectiveness of our framework.


翻译:序列建议者在捕捉用户偏好方面取得了长足进步。然而,冷启动建议仍然是一个根本性挑战,其中只有少数用户-项目互动可供个人化使用。基于渐进式的元学习方法最近由于适应速度快和易于整合的能力,在顺序建议字段中出现了基于渐进式的元学习方法。元学习算法将冷启动建议作为一种微小的学习问题,因为每个用户都作为需要调整的任务。然而,虽然元学习算法通常认为任务性样本分布在班级或价值之间是均匀的,但用户-项目互动在现实世界应用程序中并非如此(例如,多次观看最喜欢的视频,只留下好的评级,没有坏的评级)。结果,在现实世界中,计算大多数任务性培训数据的用户反馈不平衡,可能主导用户适应,防止元学习算法为个人化建议学习有意义的元知识。为减轻这一限制,我们建议基于基于梯级化的元学习的新的顺序顺序性建议框架,它捕捉到每个用户的定式评级分布的偏差,因此,我们为不断调整的周期性评级的升级式评级,从而改进了当前标准级的升级式评级,我们为适应性损失评级。</s>

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Cold-start Sequential Recommendation via Meta Learner
Arxiv
15+阅读 · 2020年12月10日
Arxiv
23+阅读 · 2018年8月3日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员