Intensive research has been conducted on the verification and validation of deep neural networks (DNNs), aiming to understand if, and how, DNNs can be applied to safety critical applications. However, existing verification and validation techniques are limited by their scalability, over both the size of the DNN and the size of the dataset. In this paper, we propose a novel abstraction method which abstracts a DNN and a dataset into a Bayesian network (BN). We make use of dimensionality reduction techniques to identify hidden features that have been learned by hidden layers of the DNN, and associate each hidden feature with a node of the BN. On this BN, we can conduct probabilistic inference to understand the behaviours of the DNN processing data. More importantly, we can derive a runtime monitoring approach to detect in operational time rare inputs and covariate shift of the input data. We can also adapt existing structural coverage-guided testing techniques (i.e., based on low-level elements of the DNN such as neurons), in order to generate test cases that better exercise hidden features. We implement and evaluate the BN abstraction technique using our DeepConcolic tool available at https://github.com/TrustAI/DeepConcolic.
翻译:对深神经网络(DNN)的核查和验证进行了深入的研究,目的是了解DNN是否以及如何应用DNN的隐藏特征,并将每个隐藏特征与BN的节点联系起来。但是,现有的核查和验证技术由于其可扩缩性而受到限制,其范围大于DNN的大小和数据集的大小。在本文件中,我们提出了一个新的抽象方法,将DNN和数据集摘要输入巴伊西亚网络(BN),我们利用维度减少技术来查明DNN的隐藏层所学的隐藏特征,并将每个隐藏特征与BN的节点联系起来。在这个BN上,我们可以进行概率推论,以了解DNN处理数据的行为。更重要的是,我们可以推出一个运行时间监测方法,在操作时间里检测稀有的投入和输入数据的变化。我们还可以调整现有的结构覆盖指导测试技术(即基于DNNNN的低层次元素,例如神经元),以便产生更好的测试案例。我们在Dreepal/DeplicalT使用MAGM/DI/DIMIOLT进行实施和评估我们现有的BIAL/DATIOLT。我们现有的BATIOLT技术。我们使用MLA/DGILATION。我们现有的BIAL/T。我们现有的工具。