In this paper, we explore the descriptive complexity theory of finite groups by examining the power of the second Ehrenfeucht-Fra\"iss\'e bijective pebble game in Hella's (Ann. Pure Appl. Log., 1989) heirarchy. This is a Spoiler-Duplicator game in which Spoiler can place up to two pebbles each round. While it trivially solves graph isomorphism, it may be nontrivial for finite groups, and other ternary relational structures. We first provide a novel generalization of Weisfeiler-Leman (WL) coloring, which we call 2-ary WL. We then show that the 2-ary WL is equivalent to the second Ehrenfeucht-Fra\"iss\'e bijective pebble game in Hella's heirarchy. Our main result is that, in the pebble game characterization, only $O(1)$ pebbles and $O(1)$ rounds are sufficient to identify all groups without Abelian normal subgroups (a class of groups for which isomorphism testing is known to be in $\mathsf{P}$; Babai, Codenotti, & Qiao, ICALP 2012). In particular, we show that within the first few rounds, Spoiler can force Duplicator to select an isomorphism between two such groups at each subsequent round. By Hella's results (\emph{ibid.}), this is equivalent to saying that these groups are identified by formulas in first-order logic with generalized 2-ary quantifiers, using only $O(1)$ variables and $O(1)$ quantifier depth.
翻译:在本文中, 我们探索有限组的描述复杂性理论, 通过检查 Hella (Ann. Pure Appl. Log., 1989) 的继承体中第二个 {Ehrenfeucht- Fra\\"is\'e bitoble bobble 游戏的功率。 这是一个 Sputer- Duplica 游戏, Spoiler 可以将每一回合的振荡器放置在两个振荡器中。 虽然它微不足道地解决了图形的形态, 但对于有限的组和其他长期关系结构来说, 它可能是非三重的。 我们首先提供Weisfeiler- Leman (WL) 彩色游戏的新版本化的Wisfefefer- Leman (WL) 的双色调调。 我们然后显示, 2- mary WL 是第二个 Ehrenfer- Fra\\ “ 振荡器” 游戏, 在 Hella 的继承体中, 这些振动器的游戏只有两组 。 我们的主要结果是, 在 rbblebleblegle 中, 只有 $(1) peble and 和 $O $ ( $) yolbolblew) 这两回合中, 足以确定所有组中所有的值的等等等值的值的值 。