Consider a host (hyper)graph $G$ which contains a spanning structure due to minimum degree considerations. We collect three results proving that when the edges of $G$ are sampled at the appropriate rate then the spanning structure still appears with high probability in the sampled hypergraph. We prove such results for perfect matchings in dense hypergraphs above Dirac thresholds, for $K_r$-factors above the Hajnal--Szemer\'edi minimum degree condition, and for bounded-degree spanning trees. In each case our proof is based on constructing a spread measure and then applying recent results on the (fractional) Kahn--Kalai conjecture connecting the existence of such measures with an appropriate probabilistic threshold result. We note that our second result provides a shorter and more general version of a recent result of Allen, B\"ottcher, Corsten, Davies, Jenssen, Morris, Roberts, and Skokan which handles the case $r=3$ with different techniques. In particular, we answer a question of theirs with regards to the number of $K_r$-factors in a graph above the Hajnal--Szemer\'edi minimum degree condition.


翻译:考虑主机( 高) $G $ G$, 它包含一个基于最小度考虑的宽度结构。 我们收集了三个结果, 证明当以适当比例对G$的边缘进行抽样时, 宽度结构在抽样高光谱中仍然有很高的概率。 我们证明这样的结果, 在密度超过Dirac 阈值、 高于Hajnal- Szemer\ edi 最低度条件的 $K_ r$- mactors、 高于Hajnal- Szemer\ edi 最低度条件的 Davies、 Jenssen、 Morris、 Roberts 和 Skokankan 的最近结果中, 我们用不同的技术, 我们用( ) Kahn- Kalai- Kalai 的( 折射线) 的预测, 将这些措施的存在与适当的概率阈值结果联系起来。 我们注意到, 我们的第二个结果提供了更短、 更笼统的版本, 最近的结果是 Allen、 B\ otcher、 Corsten、 Daves、 Jenssensen、 Mors、 Mors、 和 Skokkkkkkankan le- dest as as as as legard as as as as lex lex $- lex lex lex lex.

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年12月20日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员