This article analyzes the algebraic structure of the set of all quantum channels and its subset consisting of quantum channels that have Holevo representation. The regularity of these semigroups under composition of mappings are analysed. It is also known that these sets are compact convex sets and, therefore, rich in geometry. An attempt is made to identify generalized invertible channels and also the idempotent channels. When channels are of the Holevo type, these two problems are fully studied in this article. The motivation behind this study is its applicability to the reversibility of channel transformations and recent developments in resource-destroying channels, which are idempotents. This is related to the coding-encoding problem in quantum information theory. Several examples are provided, with the main examples coming from pre-conditioner maps which assigns preconditioners to matrices, in numerical linear algebra.Thus the known pre-conditioner maps are viewd as a quantum-channel in finite dimentions.
翻译:暂无翻译