Network slicing has emerged as an integral concept in 5G, aiming to partition the physical network infrastructure into isolated slices, customized for specific applications. We theoretically formulate the key performance metrics of an application, in terms of goodput and delivery delay, at a cost of network resources in terms of bandwidth. We explore an un-coded communication protocol that uses feedback-based repetitions, and a coded protocol, implementing random linear network coding and using coding-aware acknowledgments. We find that coding reduces the resource demands of a slice to meet the requirements for an application, thereby serving more applications efficiently. Coded slices thus free up resources for other slices, be they coded or not. Based on these results, we propose a hybrid approach, wherein coding is introduced selectively in certain network slices. This approach not only facilitates a smoother transition from un-coded systems to coded systems but also reduces costs across all slices. Theoretical findings in this paper are validated and expanded upon through real-time simulations of the network.
翻译:暂无翻译